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Despite its insensitivity to charge noise, the transmon's anharmonicity and control
pulse length are limited. Transmon state control traditionally involves a quadrature
mixer that mixes microwave signals from a room-temperature oscillator and an
arbitrary waveform generator to control the single qubit states. Scaling up quan-
tum processors faces challenges in hardware, management of qubit operations, and
read-out procedure due to the large amount of expensive room-temperature
equipment required for each qubit. Operating at millikelvin temperatures, these
devices introduce thermal noise, reducing qubit lifetime and distorting control sig-
nals. An alternative promising control method is based on superconducting digital
electronics. In these digital circuits, a bit of information is represented by a short
unipolar voltage pulse generated when a single flux quantum (SFQ) pulse passes
through a Josephson junction. The qubit states are controlled by the action of a
sequence of SFQ pulses, with the pulse-to-pulse timing adjusted to induce a coher-
ent rotation of the state vector in the computational subspace and to minimize
leakage to the outside. The paper discusses a method for controlling the states of
a transmon qubit using digital superconducting electronics. In this approach, the
sequences of picosecond voltage pulses are used to control the state of a quantum
computing system. We have considered a control scheme based on a bipolar pulse
generator and proposed an algorithm for finding the optimal implementation of a
bipolar short pulse control sequence for performing high-precision single-bit oper-
ations (with fidelity equal to 99,99 %) using deep learning algorithms with rein-
forcement: AlphaGo Zero, AlphaZero and Proximal Policy.
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Introduction 

The transmon qubit is currently the most popular solution for 
superconducting qubits but managing this type of qubit requires 
complex and expensive equipment [1]. Transmon is an LC-
oscillator in a quantum regime with a Josephson contact replacing 
the inductance, adding anharmonicity to the system and allowing 
effective separation of the low-lying levels for computational 
purposes [2]. Despite its insensitivity to charge noise, the 
transmon's anharmonicity and control pulse length are limited. 
Transmon state control traditionally involves a quadrature mixer 
that mixes microwave signals from a room-temperature oscillator 
and an arbitrary waveform generator to control the single qubit 
states. Scaling up quantum processors faces challenges in 
hardware, management of qubit operations, and read-out 
procedure due to the large amount of expensive room-temperature 
equipment required for each qubit. Operating at millikelvin 
temperatures, these devices introduce thermal noise, reducing 
qubit lifetime and distorting control signals. 

An alternative promising control method is based on 
superconducting digital electronics [3,4]. In these digital circuits, 
a bit of information is represented by a short unipolar voltage 
pulse generated when a single flux quantum (SFQ) pulse passes 
through a Josephson junction. The qubit states are controlled by 
the action of a sequence of SFQ pulses, with the pulse-to-pulse 
timing adjusted to induce a coherent rotation of the state vector in 
the computational subspace and to minimize leakage to the outside 
[5]. The realization of this approach has already been 
experimentally demonstrated [6]. In the so-called scalable leakage 
optimized pulse sequence (SCALLOPS) [7], more than one 
picosecond pulse is used during the oscillation period of the qubit, 
which allows to significantly speed up the quantum operations. 

Following this SCALLOPS idea, another approach using more 
complex sequences based on pulses of different polarities has also 
been proposed [8]. This control approach is mainly reduced to the 
task of optimizing quantum dynamic functionals by searching for 
control sequences based on some input data (qubit frequencies, 
nonlinearities, oscillator frequencies). It is well known that the 
vast majority of quantum dynamics optimization algorithms are 
based on heuristic or purely stochastic approaches (e.g., 
coordinate descent or genetic algorithms). A major limitation of 
such algorithms is the strong dependence of the final accuracy on 
the hyperparameters, as well as the need to completely reapply the 
algorithm even for small changes in the system parameters. In 
turn, machine learning using neural networks and reinforcement 
learning algorithms allows to achieve high accuracy of results and 
at the same time has the ability to change it when changing system 
parameters even without the need for complete retraining [9]. 

This paper treats the control of the qubit state as a 
combinatorial optimization problem using reinforcement learning 
algorithms. However, the problem is still quite hard for these types 
of algorithms to solve because the accuracy of quantum operations 
is very sensitive to small changes in the pulse sequences, making 
the optimization task much harder due to the narrow local 
optimum. This was the reason why the Zero algorithm family was 
the first choice for the optimization algorithm [10] (it will be 
discussed in Ch.2). Nevertheless, the algorithm changed 
drastically during the training process, and the algorithm updates 
as well as the reasons for them are given in Sec. 3, including the 
transition of the reward function from leakage to non-

computational qubit basis to quantum fidelity (both terms are 
introduced in Sec. 1). Finally, in the results section, we present 
found SFQ pulse sequences for different qubit parameters, all of 
which satisfy the accuracy criterion of a single qubit operation of 
99,99% (fidelity). 

1.. Model of the syst

For the transmon state control under the action of SFQ pulses 
simulation, we implement a mathematical model of the system 
using dc/SFQ-converter as the pulse generator [11]. The transmon 
is a modified version of a Cooper Pair Box (CPB) [2], containing 
a superconducting “island” connected to the rest of the circuit only 
by a Josephson tunneling current, shunted by the capacitance CQ, 
see Figure 1. The coupling with the dc/SFQ-converter is 
capacitive through Сс.  

Fig. 1. Schematic representation of the transmon spectrum from [2] 
(right), capacitively coupled through Сс to the short pulse generator 
(central region). Schematic representation of the SFQ pulses effect  

on a qubit using Bloch sphere (left) 

In transmons, the capacitive energy EC = e2/2C (where C = CC + CQ) 
is much smaller than the Josephson energy EJ , namely, the energy 
stored in a Josephson junction when a supercurrent flows through 
it, which can also be corrected in situ by applying an external 
magnetic flux to the circuit. The transmon Hamiltonian including 
the electrostatic and Josephson contributions can be written in the 
following form: 

௖𝐻 ൌ 4𝐸 ൫𝑛 െ 𝑛௚൯ െ 𝐸௃ሺ1 െ 𝑐𝑜𝑠𝜑ሻ,      (1) 

where 𝑛 ൌ െ𝑖
డ

డఝ
 is the number of Cooper pairs in charge units 2𝑒, 

φ is the phase operator, and 𝑛௚ ൌ 𝐶௖𝑉 ሺ𝑡ሻ⁄2 𝑒 is called the 
effective charge displacement. The commutation relation on the 
operators is satisfied, considering ℏ ൌ 1. 

The SFQ control pulse has a picosecond duration τ, while its 
voltage integral over time is equal to the magnetic flux quantum 
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Substituting the expressions (2) into Eq. (1) and averaging 
over the rapidly oscillating summands one can obtain the 
Hamiltonian of the qubit in the representation of the Bose-
Hubbard model: 

𝐻 ൌ 𝜔଴ଵ𝑎ற𝑎 ൅ 𝛼ሺ𝑎ற ൅ 𝑎ሻସ െ 𝑖𝜀ሺ𝑡ሻሺ𝑎ற െ 𝑎ሻ,    (3) 

where 𝜔଴ଵ ൌ ඥ8𝐸௃𝐸௖ is the transition frequency between the 

ground state 0⟩ and the first excited state 1⟩, 𝛼 ൌ
ିா೎

ଵଶ
 is the 
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nonlinearity parameter, and the control field is defined as 

𝜀ሺ𝑡ሻ ൌ
஼೎௏ሺ௧ሻ

ଶ ට
ఠబభ

ଶ஼ೂ
. Thus, a single SFQ pulse in the sequence 

induces a discrete small rotation by an angle of  

𝛥𝜃 ൌ 𝐶௖Ф଴ට
ఠబభ

ଶ஼ೂ
 (4) 

on the Bloch sphere corresponding to the change of the qubit state 
(see Fig.1).  

In this case, the evolution of the qubit states (3) is defined as 

𝜓ሺ𝑡ሻ⟩ ൌ 𝑈ሺ𝑡ሻ𝜓଴⟩,𝑈ሺ𝑡ሻ ൌ 𝑃𝑒ି௜ బ׬
೟

ு൫௧ᇲ൯ௗ௧ᇲ
,  (5) 

where 𝑃 is the chronological ordering operator, 𝜓଴⟩  is the initial state 
of the qubit. The population of levels of the system is defined as: 

𝑊௠ሺ𝑡ሻ ൌ |⟨𝜓ሺ𝑡ሻ⟩|ଶ, 𝑚 ൌ 0,1,2 …     (6) 

to calculate the fidelity of the quantum operation 
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ଵ

଺ టబ
∑ |⟩ ⟨𝜓଴⟩|ଶ  (7) 

averaged over initial states at different poles of the Bloch sphere 
|𝜓଴⟩ ={𝑥േ⟩,∨ 𝑦േ⟩,∨ 𝑧േ⟩}: 
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In (7) 𝑈௚ is the gate matrix in the realization of ideal quantum 

operations. For example, for the operation  𝑌ഏ
మ
 :   𝑈௚ ൌ

ଵ

√ଶ
. 

We assume that the sequences can be represented as short and 
small amplitude SFQ pulses that can be applied at the clock 
frequency of a 2π/ω(gen) high-frequency oscillator. The spectrum 
of a single SFQ pulse is broad and constant in the frequency range 
of interest. Thus, the spectrum of the whole sequence depends 
only on the structure of the sequence itself, and the shape of the 
single pulse is not significant [12].  

By using SFQ pulses of different polarity and extending the 
space of possible pulse states to bipolar [13], we can 
approximately double the pulse density with respect to the 
unipolar SCALLOP approach [14]. Since the operation time is 
significantly shorter than the relaxation and dephasing time, the 
main source of error will be the leakage to the higher qubit states 
(beyond the basis levels). In this case, an important challenge is to 
develop algorithms that optimize the control sequence structure to 
reduce this leakage, and consequently improve the accuracy of the 
single-qubit operation itself. Unlike the work of [15], we do not 
restrict the possibility of arranging the pulses solely as time-
symmetric pairs. In addition, we envision the possibility of 
applying a "virtual Z-gate" [16] after the gating sequence to 
achieve the desired phase of the wave function.  

2. AlphaZero neural network algorithm
for SFQ search of pulse sequences

First of all, we would like to affirm the choice of AlphaGoZero 
algorithm [10] as an initial approach for the problem. Since the 
pulse sequence for qubit control is discrete, and the action space 
is narrow (only 3 actions for every possible pulse in every 
sequence index), we can reduce the types of reviewed algorithms 
to discrete optimization. One of the most distinguishable attributes 
of AlphaZero algorithm is that it’s a model-based algorithm (in 
contrast to most RL algorithms being model-free), specifically, 

utilizing the access to training environment to boost its training 
capabilities. Contrary to that, the vast majority of (model-free) 
algorithms for quantum dynamics optimization are based on 
heuristic or purely stochastic approaches (e.g., the method of 
coordinate descent or genetic algorithms [17]). For such algorithm 
types, a significant limitation is the strong dependence of the final 
accuracy on the initial assumptions (hyperparameters), as well as 
the need for complete reapplication of the algorithm even for the 
small system parameter changes. In turn, machine learning using 
neural networks and reinforcement learning algorithms, some of 
which are AlphaGo Zero and AlphaZero [18], can achieve high 
accuracy results when the system parameters are changed, even 
without requiring a complete re-training. 

In this paper, we have chosen a kind of convolutional neural 
network called ResNet (Residual neural Network) [19]. Its 
distinctive feature is that in some layers, in addition to the output 
data from the previous layer, output data from several layers 
backward are also fed to their input (see Fig.2). This approach 
ensures high accuracy of processing complex patterns and 
prevents the neural network from losing important data. 

Fig. 2. Schematic representation of ResNet single block 
used in the AlphaZero algorithm 

In the AlphaZero and AlphaGo Zero algorithms, the neural 
network is required to predict Monte Carlo tree search (MCTS) 
policies, which requires predicting action probabilities and 
average empirical rewards for each of the states. Technically, this 
requirement is expressed as having two outputs (reward/policy) 
originating from the same set of residual layers. 

3. Steps taken in the development and modification
of the algorithm 

Largely, the development of the algorithm for optimizing SFQ 
bipolar sequences can be described in several stages: 

i. Implementing leakage to non-computational levels as a
loss function. 

ii. MCTS search alteration.
iii. Transition from AlphaGo Zero to AlphaZero.
iv. Modification of the reward function.
v. Transition to PPO algorithm.
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i. Implementing leakage to non-computational levels as a loss
function 

Selecting a reward metric that aligns with the specific goals 
and objectives of the reinforcement learning problem can greatly 
impact the overall success of the algorithm. By focusing on a 
physics-based reward metric, we are able to capture the intricacies 
of the system and optimize the learning process better. In this case, 
prioritizing the reduction of leakage to non-computational levels 
Wn ≥ 2 (t) < 10-5 as the primary reward metric allows for a more 
effective training process. This strategic decision has resulted in 
quickly converging algorithm, demonstrating the importance of 
selecting the right reward metric for optimal performance. 

ii. Modification of the MCTS structure
The MCTS structure used in this work has undergone several 

changes compared to the original method presented in [18]: each 
Monte-Carlo tree search consists of searching a leaf of the tree, 
possibly expanding the leaf, and performing a backup. The main 
bottleneck here is the expansion operation, which requires the use 
of a neural network to obtain a priori probabilities of actions and 
the estimated value of the game. To make this expansion more 
efficient, we use minibatches when searching multiple leaves, but 
then perform the expansion in a single evaluation execution from 
the neural network, as shown in Fig.4. This approach has one 
drawback: since multiple MCTSs are executed in a single batch, 
the result is not the same as when they are executed sequentially. 
Indeed, initially, when we have no nodes stored in the MCTS 
class, our first search will expand the root node, the second will 
expand some of its child nodes, and so on. Initially, however, a 
single batch of searches can only expand a single root node. Of 
course, later individual searches in a batch can follow different 
paths and expand. However, initially, mini-batch expansion is 
much less efficient than sequential MCTS. To compensate for this, 
mini-batches are still used, but now multiple MCTSs are 
performed. This approach provides more extensive exploration of 
states at the beginning of training, speeding up the learning 
process. 

Fig. 3. Conventional MCTS structure (left) and modified (batched) 
MCTS structure (right) 

iii. Transition from AlphaGo Zero to AlphaZero
The next step was to transition the structure of the algorithm 

from AlphaGo Zero to AlphaZero. The need for this change was 
due to the fact that AlphaGo Zero has encountered several issues 
during the training process. First of all, it turned out that the 
algorithm was excessively data-demanding, requiring a huge 
amount of training steps just to collect enough training data from 
the environment, losing its computational efficiency and taking 
more time to produce pulse sequences. In addition, this iteration 
of the training algorithm is sensitive to hyperparameters since it 
demands two neural networks (and two different policies) to train, 
making the training a difficult process, minimizing the advantage 
in comparison with other gradient-free and metaheuristic 
algorithms. To avoid these issues, a transition to a more adaptive 
version of this algorithm (AlphaZero) had to be done. 

Several differences between AlphaGo Zero and AlphaGo 
should be noted: 

– Supervised learning is not used to initialize policies.
– A single policy is used.
– A single network is used for both the policy and the value

function. 
– Raw state configurations are fed into the network instead of

manually created functions. 
In an effort to remove a priori probabilities (the assumption of 

random variable distribution) from the algorithm, Google 
DeepMind released AlphaZero [18]. AlphaZero retains the same 
model and overall learning process as AlphaGo Zero, but removes 
some components that don't transfer well to other games. Notable 
changes include: 

– Removal of data augmentation (increasing the number of
states in memory by modifying current states), which AlphaGo 
Zero did because it would have created impossible configurations 
for many environments. 

– The course of the independent game now involves a single
neural network instead of two (best player and student). 

– AlphaZero reuses the same hyperparameters except for one
(the study depends on the number of moves allowed) for all 
games. 

In addition to switching to a newer version of the algorithm, 
parallelization of the process of collecting information about the 
environment during training (self-play) was also implemented, 
which allowed for faster training. Also, for some of the 
hyperparameters we introduced their dynamic variation: for the 
constant of the neural network learning rate, we introduced 
exponential fading with a variable coefficient. 

iv. Modification of the reward function
Despite the fact that leakage can be considered a well-fitting 

physics-based metric for this problem, it does not fully reflect all 
the aspects of the quantum operation (e.g., it does not include the 
phase of the state and its changes). We have switched to the 
operation fidelity <F> as a reward value measure as it better 
represents the chosen metric as the control pulse quality measure. 
In addition, we also implemented a reward shaping procedure. It 
involved adjusting the reward potential in the form of a 
logarithmic value R = log(1 - F) to provide a smoother transition 
in the region where (1 – F) = 10-4. This adjustment allowed the 
algorithm to incrementally increase the final result to an average 
of 99,99%, a slight improvement from the 99,95% achieved over 
the previous iteration. 
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Additionally, a reward discount was introduced based on each 
pulse index inside the sequence. However, this led to the agent 
experiencing overtraining early in the sequence construction 
process. This caused the agent to pay too much attention to the 
amplitude of the state and to not to take state phase into account 
in the beginning of the sequence, computing additional phases at 
the end of the operation, negatively impacting the overall 
efficiency and effectiveness of the algorithm. 

v.. ansition to PPO algorithm
The transition from AlphaZero algorithm was conditioned by 

several reasons. The algorithmic simplicity of AlphaZero is 
sacrificed for the power of state exploring and better system 
dynamic prediction provided by the MCTS search. In addition, 
due to the fidelity value sensitivity to the even slight changes in 
pulse sequence, training stability is meandering, negatively 
affecting steadiness of network inference. And, finally, the overall 
complexity of AlphaZero algorithm makes it prone to overfitting 
under the circumstances of this work, namely, the relative 
simplicity of the agent environment. On the other hand, Proximal 
Policy Optimization (PPO) is a recent advancement in 
reinforcement learning that provides an improvement in trust 
region policy optimization (TRPO). This algorithm was proposed 
in 2017 and has shown remarkable performance [20].  

The magnitude of policy update will be limited to a small 
region to avoid huge updates that could potentially be detrimental 
to the learning process. In other words, PPO behaves exactly like 
other policy gradient methods, in the sense that it also involves 
calculating probabilities of forward pass outcomes based on 
various parameters and computing gradients to improve these 
decisions or backward pass probabilities. It involves using an 
important sampling factor like its predecessor, TRPO. However, 
it also ensures that the old policy and the new policy are at least at 
a certain proximity (denoted by ε), and very large updates are not 
allowed. The reliability and computational efficiency of this 
algorithm, including massive parallelization options, greatly fits 
in the conditions of this work. 

Besides, the ResNet neural network architecture was replaced 
by multi-layer perceptron (MLP), which has significantly 
improved training speed without noticeable loss in results due to 
extensive hyperparameter calculation. 

The hyperparameters were adjusted both for the AlphaGo 
Zero, AlphaZero and PPO algorithm implementation. Since PPO 
shows better learning dynamics, this work presents a visualization 
of the dynamics of the reward function in response to 
hyperparameter tuning, as shown in Fig.4, and the best run for a 
specific set of parameters is shown in Fig.5. The hyperparameters 
for PPO algorithm [20] varied in the following ranges: 

 decreasing learning rate  (LRann)  [True, False] –
enable/disable learning rate decrease over  training steps; 

 entropy coef (Entropy) [0,001; 0,001; 0,01] –entropy
coefficient in PPO loss function; 

 GAE lambda (GAElam) [0,900; 0,905;… 0,990]– lambda
coefficient in general advantage estimation algorithm; 

 gamma (Gamma) [0,900; 0,905;… 0,990] – discount
factor; 

 layer size (LS) [64; 128; 256] – number of neurons inside
each of two layers of MLP; 

 total steps (Steps) [3×105; 35×104;… 15×105] – total
amount of training steps (learning rate decrease rate depends on 
this parameter); 

 epochs [3; 4;... 10] – the number of backpropagation
iterations during each training step; 

 value coef [0,25; 0,30;... 0,75] – value coefficient in PPO
loss function; 

 Adam gradient descent algorithm parameters were fixed
according to [21]. 

Fig. 4. Hyperparameter search for PPO algorithm. Each search run is 
represented with a curve with its own distinctive color. Brighter colors 

correspond to better fidelity values at the end of the training 

As shown in Figure 4, by systematically varying the values of 
key hyperparameters and observing how they affect the overall 
performance of the algorithm, one can gain valuable insight into 
how to optimize models for better results. This process involves 
running multiple experiments and recording the corresponding 
performance metrics, in this case fidelity. Overall, strong 
hyperparameter dependence is a crucial aspect of deep 
reinforcement learning, since even small changes in 
hyperparameters can significantly improve or degrade training 
stability. 

4. Results

In our analysis of the developed neural network algorithms 
(AlphaGo Zero, AlphaZero, and PPO) for tackling the 
optimization problem of calculating the quantum dynamics of a 
qubit, we have found interesting insights that are showcased in 
Figure 5. The comparison of their performance is crucial in 
understanding how well each algorithm fares in achieving the 
desired outcomes. 

The central performance metric used in this comparison is 
infidelity (1 - <F>) from the training time, a convenient measure 
to compare different learning algorithms. It becomes apparent 
from our analysis that both AlphaGo Zero and AlphaZero 
algorithms fall short of the required accuracy level, with (1 - <F>) 
staying above 0,0001. In contrast, PPO emerges as the standout 
performer, consistently achieving the desired precision level. 

This disparity in performance highlights the varying 
capabilities of these algorithms when tasked with the complexity 
of quantum dynamics calculations. While AlphaGo Zero and 
AlphaZero show promise, it is evident that PPO excels in 
delivering accurate results. This comparative analysis serves as a 
valuable reference point for researchers and practitioners looking 
to leverage neural network algorithms in quantum computing 
applications. 
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Fig. 5. Performance comparison for AlphaGo Zero (blue), AlphaZero 
(red) and PPO (green) algorithms, measured in fidelity change over 
averaged training time (in minutes). Qubit parameters correspond  

to that of row 3 in Figure 6 

మ

Figure 6 and Table 1 present the results of search of control 
sequences for the parameters of the system (2) under 
consideration, for example, an operation 𝑌ഏ. 

Table 1 

Qubit parameters configurations and corresponding 1-F  
for the best pulse sequence found for each parameter set.  

All of the sequences were produced by the PPO algorithm 

№ 𝜔଴ଵ⁄2 𝜋, 
𝐺𝐻𝑧 

𝛺௚௘௡⁄2 𝜋, 
𝐺𝐻𝑧 

⁄𝜇 2 𝜋, 
𝐺𝐻𝑧 

𝛥𝜃, 
𝑟𝑎𝑑 

1 െ 𝐹, 
10ିହ 

1 5 25 0,35 0,024 4
2 4 25 0,25 0,024 8
3 3 25 0,25 0,024 8
4 5 25 0,25 0,032 7
5 5 25 0,5 0,024 5
6 5 25 0,25 0,032 8
7 5 25 0,3 0,024 8
8 7 25 0,25 0,024 9
9 5 30 0,25 0,024 6

10 5 25 0,25 0,024 9
11 5 25 0,4 0,024 7
12 5 25 0,45 0,024 8
13 5 45 0,25 0,024 6
14 5 35 0,25 0,024 7
15 5 25 0,25 0,021 6
16 5 25 0,25 0,03 7
17 6 25 0,25 0,024 7
18 5 40 0,25 0,024 9

మ

Figure 6 presents the results of search of control sequences for 
the parameters of the system (2) under consideration, for example, 
an operation 𝑌ഏ. 

Conclusion 

To summarize the impact on model performance, the key 
reasons for the outcome should be reviewed sequentially. While 
the most important contribution to model performance may not be 
clearly defined, in this case, changes in the reward metric had the 
most impact on the result. The main problem of using regular 
fidelity as a reward is that it has a noticeable drawback in reward 
responsiveness to small changes in fidelity. Since our goal was to 
achieve a high fidelity value, using plain fidelity as a reward value 
generates only small weight updates, which leads to instability of 
the training and makes the algorithms particularly susceptible to 
hyperparameter changes.  

This is exacerbated by the fact that the fidelity value has only 
narrow local optima with small changes in the value itself. 
Conversely, the design of the reward function can take into 
account these peculiarities of the given system and improve the 
training process of the algorithm. Nevertheless, the algorithm 
itself had to be changed from AlphaGo Zero to AlphaZero to PPO 
because our initial approach to solving this problem was too 
complex and therefore more data dependent and prone to 
overfitting. Each step in this process was intended to maintain 
enough algorithmic complexity to handle this task, while being as 
simple as possible for effective computation and generalization. 
While the comparison of all three algorithms seems irrelevant due 
to the fact that their performance on any task can mostly be 
investigated empirically, in this work the PPO algorithm showed 
the most balanced approach to tackle the transmon SFQ control 
problem. 

Thus, by comparing different algorithms and approaches to 
this task, we could state that model-free and on-policy RL 
algorithms are suitable for optimization tasks with narrow local 
optima and complex behavioral dynamics, which is proven on an 
example of our task. Model-based algorithms can cover more 
complex dynamics in the system, but it turned out that this 
problem did not require additional planning to solve, so model-
free approach was considered the most useful in this case. 

Fig. 6. Pulse sequence visualizations for different qubit parameters. All sequences satisfy the criterion of F > 99,99% 



T-Comm Tом 18. #7-2024
62

EELLEECCTTRROONNIICCSS..  RRAADDIIOO  EENNGGIINNEEEERRIINNGG

The on-policy approach, on the other hand, allowed stable 
policy updates to be maintained in order to reach a narrow local 
optimum without detrimental policy changes. 

However, there is still some room for improvement. The 
accuracy of the algorithm can be increased by additional tweaks  
(e.g. setting the number of layers in the MLP used in the algorithm 
as a hyperparameter) and by optimizing the training process both 
algorithmically and computationally. Additionally, some 
augmentation can be added to increase the training data diversity 
and therefore to achieve the high level of robustness [22]. In the 
future, the algorithm will be trained to generalize over multiple 
values of qubit parameters. It will help to achieve sustainable 
results for a wide variety of experimental setups without the need 
to train separate networks for each parameter set. 
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Аннотация

В статье обсуждается метод управления состояниями кубита-трансмона с использованием цифровой сверхпроводниковой электроники.
В этом подходе последовательности пикосекундных импульсов напряжения используются для управления состоянием квантовой
вычислительной системы. Рассмотрена схема управления на основе генератора биполярных импульсов; предложен алгоритм поиска
оптимальной реализации управляющей последовательности биполярных коротких импульсов для выполнения высокоточных
однобитовых операций (с точностью 99,99 %) с использованием алгоритмов глубокого обучения с подкреплением AlphaGo Zero,
AlphaZero и Proximal Policy. 

Ключевые слова: квантовые вычисления, управление квантовыми устройствами, глубокое обучение, обучение с подкреплением, AlphaZero, PPO,
машинное обучение, трансмон.
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