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One of the main ideas of software-defined network is the creation of
special software (OpenFlow controller), which allows you to separate
the management of existing network equipment (routers and
switches) without changing it. This software can run on a separate
PC, which is managed by a network administrator. Therefore, this
paper examines the performance of the OpenFlow controller. This
article describes the OpenFlow OpenDaylight controller, and also
defines its place in the network architecture of a software-defined
network. The methodology of the conducted research of the experi-
ment includes a description of the special Cbench software. In oper-
ation, Cbench was launched in two modes: the delay mode for send-
ing subsequent packets and the maximum data transfer mode for
measuring bandwidth. In delay mode, each switch sends one new
packet to the emulated stream and waits for a response. After that,
it sends the next packet and so on. The delay shows the time it takes
for the controller to process an OpenFlow request under low load. In
bandwidth mode, each switch sends requests until the buffer is full.
Thus, this mode allows you to measure the maximum performance
that the controller can handle. According to the presented method-
ology, experimental samples of the network were collected. The
experiments are as follows: 1) when the switch distributes the load
to the controllers and, 2) Cbench generates streams for each of the
controllers separately. The mode of operation of the Cbench pro-
gram is also changing. According to the results of the experiments,
data is obtained on the number of packets processed by each con-
troller under different conditions.
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Introduction

Currently, network architectures are becoming increasingly
popular, which have separate levels of data representation (a
comparison with the route table and a transaction of network
packets from one port to another is performed) and for manage-
ment (establishing the optimal route and forwarding data along
selected routes). This architecture has many advantages due to an
ordered algorithm that makes the data transfer process much eas-
ier. Data transmission is controlled by special software, which is
a network software controller. The software introduces its own
delays for data processing, being on the side of a separate server.
Due to this, the task of studying the performance of the controller
in software-defined network becomes the most relevant [1].

Trends in the development of modern infocommunication
networks, such as the intensive growth of new network applica-
tions, the growth of the number and types of new network devic-
es, lead to a significant increase in the volume of transmitted
traffic. In this case, it becomes necessary to manage heterogene-
ous flows and provide - the required level of QoS (Quality of
Service) quality of service when ensuring the security of pro-
cessing the transmission of stream data. This leads to the fact that
providers of large networks need to look for new network control
mechanisms, with the ability to quickly configure networks.

Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) technologies with customizable software
provide control over network management, and control is more
intelligent and centralized. This makes the network more flexi-
ble, programmable, and innovative [2, 3].

The implementation of SDN entails the need to develop ade-
quate models that allow you to quickly obtain accurate estimates
of QoS parameters necessary at the stage of network design and
further during operation in order to be able to quickly respond to
changes in network requirements and network topology modifi-
cation [4]. It should be noted that the issues of performance and
scalability of SDN are still little investigated in terms of building
analytical models. Simulation simulations and experiments on
real networks have their advantages

Most of the work devoted to the study of the effectiveness of
the SDN is aimed at developing simulation models and experi-
menting on real equipment. [5-7] presents mathematical models
for evaluating the performance of controllers and switches under
overload conditions. The OpenFlow-based SDN analytical model
in [8,9] approximates the data plane as an open Jackson network
with a controller modeled as a M/M/1 queue. [10] presents the
SDN performance model based on the OpenFlow protocol with
several OpenFlow switches, but this model is obtained with the
assumption that the processed flows are the simplest, while the
SDN controller incoming message processing performance is
calculated based on the M/G/1 model. However, it is known that
the flows generated by modern applications in the network are
not Poisson, which requires considering the real properties (pa-
rameters) of traffic in the models used [11, 12].

The works [13, 14] present mathematical models for systems
that process non-Poisson flows, but only the parameters of the
functioning of individual sections of the SDN, and not the net-
work, are considered.

The development of an analytical model of SDN as a G/G/1
system remains very relevant. The methodology presented in
[10] is convenient to use to expand the application processing

model in the SDN when servicing non-Poisson flows based on
the model of an arbitrary G/G/1 queue.

The following is an analytical model of the OpenFlow-based
software-configurable network, since it is the most common, and
such a model can be used as a basic model for other communica-
tion protocols in the SDN. As a request, a separate package, or a
bundle of packages, or a stream is considered.

Packet traffic formed in the form of packet bursts is consid-
ered as processed flows, which most closely corresponds to the
nature of formation of modern flows [15].

Like the approach, [10] analyzes separately the request re-
ceipt process and the procedure for forwarding requests through
the switch and the OpenFlow controller, and then the system for
forwarding requests to the SDN.

Theoretical information

The controller is a special server running on a special net-
work environment, together with network software. The network
environment simplifies the process of developing components, as
well as combining them within a single project. It interacts with
the equipment and makes it possible to monitor and manage the
software-defined network in full. The network environment itself
does not control the network, but only allows you to use an inter-
face for special software that already could manage all the net-
work functionality.

Currently, there is a variety of controllers used in software-
defined networks. To conduct the experiment, the OpenDaylight
controller was chosen.

Previously, network equipment was not controlled centrally —
all settings were written individually for each gate-
way/matchmaker. And it suited almost everyone. However, with
the advent of new cloud technologies, needs have changed and
new ideas for organizing network management have been needed.
One of these ideas was SDN (Software Defined Networking). The
idea is that in a network based on it, network management is sepa-
rate from data devices, which adds another layer of abstraction.

Based on this idea, another one was developed - NFV (Net-
work Functions Virtualization), which closely intersects with the
idea of SDN. NFV allows you to virtualize individual network
functions that previously could only be implemented physically,
for example, a firewall or IDS. That is, physically the user can be
in Samara, and the firewall is overseas [16].

And then there is a transition to OpenDaylight. It is a platform
for organizing the work of these technologies. Strictly speaking,
this is not a ready-made solution, but a framework based on which
interested companies and developers can build their products for
SDN networks. Before describing OpenDaylight further, you need
to get some idea of the structure of such networks. You can condi-
tionally divide an SDN network into three layers:

° at the very top level are applications that are responsi-
ble for network and business logic and monitor/monitor network
behavior. More complex solutions also combine cloud and NFV
applications, and design network traffic according to the re-
quirements of these applications;

o the second layer, in fact, is an abstraction layer - on it
there is a separation of network management and data transmission;
o and finally, the last layer is the layer of data transmis-

sion devices. It is worth noting that these devices can be both
physical and virtual.
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OpenDaylight concentrates on the second layer of the SDN
network and provides a set of RESTful APIs and an OSGi
framework for upper-layer applications ("northern interface"),
while implementing C&C protocols for data devices such as
OpenFlow, BGP and SNMP ("southern interface"). In addition, it
implements various managers - from topology manager to traffic
forwarding manager.

The OpenDaylight kernel is written in Java, therefore, it can
work on any system where JVM is available. In addition, this
framework is extremely flexible and modular, which allows you
to use only the capabilities that are necessary for a specific net-
work.

In general, this is a rather promising direction, which, how-
ever, makes sense only for a large Enterprise sector, for example,
for backbone providers.

Having studied the capabilities of the controller, we can say
that OpenDaylight can process more than 500 thousand threads
in one second, while saving time for processing one packet about
Sms[17].

If you do not optimize the generated flows of the system in
question, then the use of this architecture will be ineffective.
Here, in addition to the OpenFlow controller, there are also third-
party components that play an important role in the formation of
delays. But, if you perform optimization at the very beginning,
then the efficiency of using the OpenFlow controller can be in-
creased significantly.

network environment

OpenFlow
controller

Fig. 1. SDN network architecture

Figure 1 shows a software-defined Open Flow network con-
sisting of an OpenFlow controller, an OpenFlow switch, com-
municating over a communication channel.

Performance Study Methodology

With the help of special open source Cbench Security Detec-
tion software, it is possible to simulate several OpenFlow indica-
tors to measure controller performance and any other parameters,
including monitoring tools and maximum performance, detec-
tion, and control of incoming traffic, as well as outgoing traffic
volumes [18], with a high level of packet verification.

Cbench will be used to measure controller performance. In
this case, the number of threads per second that the controller can
process will be indicated.
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In software-defined network OpenFlow, the controller estab-
lishes and distributes traffic through OpenFlow switches. The
distribution process may occur statically before the arrival of the
packet (active distribution) or dynamically (reactive distribution)
as part of the next process. The latter flow parameter is particu-
larly sensitive as the flow slows down the first packet slightly.
Once configured, the thread addressing state is cached on the
OpenFlow switch so that the process is not repeated for subse-
quent packets in the same thread. OpenFlow switches also report
cache and backup status indefinitely, after a specified timeout, or
after a period of inactivity. The installation process, in which
both streams are an integral part of the SDN, has been identified
as the most likely source of bottlenecks.

The Cbench software measures the various performance pa-
rameters associated with the flow setup time. Cbench simulates a
configurable number of OpenFlow switches so that they all con-
nect to the same OpenFlow controller. Each simulated switch
sends several new message streams to the OpenFlow controller,
waits for the corresponding configuration response stream, and
records the time difference between request and response.

Cbench supports two operating modes: delay mode and data
transfer mode for bandwidth measurement. In delay mode, each
switch sends one new packet to the emulated stream and waits
for a response. After that, it sends the next packet and so on. The
delay shows the time it takes for the controller to process an
OpenFlow request under low load.

In bandwidth mode [19], each switch sends requests until the
buffer is full. Thus, this mode allows you to measure the maxi-
mum performance that the controller can cope with.

Experimental studies

Below are experimental network diagrams, when Huawei
S5720 distributes the load to controllers (Fig. 2) and is generated
from the Cbench server for each controller OD-1, OD-2, OD-3
and OD-4 its flow (Fig. 3). Description of the main equipment:

1) four servers to install an OpenDaylight (OD) controller on
each server;

2) a dedicated ser r for installing Cbench software;

3) Huawei S5720 switch for load sharing;

4) GigabitEthernet communication channels.

OD-1

GigabitEthermnet

Fig. 2. Experimental network diagram,
Cbench server generates one stream
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GigabitEthemet

Fig. 3. Experimental network diagram, Cbench server generates four
streams for each controller

Description of the experiment:

1. Maximum Performance Experiment. The number of
threads is 1, 2, 4, 6 and 8. The stream is generated by Cbench on
a dedicated server. The flow passes through the Huawei S5720
switch. On the switch, the load is distributed to 4 OpenDaylight
controllers. Cbench runs with the «-t» option with maximum
performance.

2. Experiment in delay mode. Cbench starts with the «-i» pa-
rameter with a delay between the switches being connected. The
remaining parameters, as in the 1st experience.

3. Maximum Performance Experiment. The number of
threads is 1, 2, 4, 6 and 8. From the dedicated server, threads are
sent to each controller separately. At the same time, Huawei does
not perform load balancing. Cbench runs with the «-t» option
with maximum performance.

4. Experiment in delay mode. Cbench starts with the «-i» pa-
rameter with a delay between the switches being connected. The
remaining parameters, as in the 3rd experience.

Results of the experiment

In order to correctly calculate the number of controllers at a
certain load on the experimental network [20], you need to know
the bandwidth for each controller.

A test result was obtained, which consists of 5 command runs
with a certain number of studies. Each launch was carried out on
1, 2, 4, 6, 8 streams. The result shows testing to achieve maxi-
mum throughput performance (Figure 4).

The results clearly show that maximum performance is ob-
served where the OpenDaylight controller processes 2 and 8
threads at once.

Test result for the delay time study (Figure 5).

The results clearly show that when sent from the OpenFlow
switch to the controllers, the minimum delay is where the
OpenDaylight controller processes 4 and 6 threads at once.

ml flow m2 flows m4 flows 6 flows m8 flows

158589

I

158592
/

158494 158497
/
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Fig. 4. Network Bandwidth Result for the First Type of Testing
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Fig. 5. Network Bandwidth Result for the Second Type of Testing

Test result when a Cbench object is started on each
OpenDaylight controller and the switch does not perform load
sharing (Figure 6).
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Fig. 6. Network Bandwidth Result for Third Test

e

T-Comm Tom 17. #1-2023




As can be seen from the results, the lowest performance is ob-
served when processing a single thread by a group of controllers.

Test result to examine the delay time when the OpenFlow
controller does not perform load sharing (Figure 7).

ROO000
TOOODOH

GO0000
m OpenDaylight-1
= OpenDaylight-2
500000 L
w OpenDaylight-3

OpenDuylight-4
400000

300000

200000

100000

I flow
2 flows

4 flows
6 flows
B flows

Fig. 7. Network Bandwidth Result for the Fourth Type of Testing

Total, based on the total results for all four types of tests
(Figure 8).
206m00 Total for tests
2020000

1960000

1718 19 0N BB M BB FBEH NN

Fig. 8. Total sum of network performance for 31 experiments performed

As you can see from the results of the total, during the first two
tests, the greatest performance increase is observed at 8 threads.

Conclusion

After network testing is complete, we can conclude that de-
lays are the most significant aspect to reduce performance. In
other words, the relationship between the OpenFlow switch and
the OpenDaylight controller should have as little active network
equipment as possible and give the highest available speed. This
study shows that when the load is distributed to the controllers,
there is no significant increase in performance.

When the switch is involved in load balancing: maximum
throughput performance is observed where the OpenDaylight
controller processes 2 and 8 threads at once, and minimum laten-
cy where the OpenDaylight controller processes 4 and 6 threads
at once. When the switch does not perform load balancing, the
lowest throughput performance is observed when processing one
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thread by a group of controllers, and the minimum latency of
one thread by a group of controllers.
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AHAJIN3 DPPEKTUBHOCTU KOHTPOJIJIEPA OPENFLOW B CETU C PA3HOM HATPY3KOWM

Axynoe [leHuc Onezoeuy, [Tosomkckuli 2ocydapcmeeHHbIl yHUBEpcUumem mesneKoMmyHUKauul u uHgpopmamuku, 2. Camapa, Poccus,
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AHHOTaUUA

OpfHoit U3 OCHOBHbIX MAEN MPOrpaMMHO-OMPEAESIAEMOi CETU ABNAETCA CO3JaHUe CreLManbHOro nporpaMMHoro obecnevenus (koHtpomnepa OpenFlow),
NO3BONAIOLLErO Pa3zAeNNTh YrpaBfieHMe CyLUECTBYIOLMM CeTeBbIM OGOpyAoOBaHMeM (MapLUpyTW3aTopaMM M KOMMyTaTopamu) 6e3 ero usMeHeHus. DTo
nporpaMMHoe obecriedeHne MoxeT pabotate Ha otaenbHoM [1K, koTopbiM ynpaenseT ceTeBoii agmuHucTpatop. [losToMy B 3Toii cTaThe MccneayeTca
npousBoauTensHocTb koHTponnepa OpenFlow. B atoit ctatbe onucbiaetca koHTponnep OpenFlow OpenDaylight, a Takxe onpeaenserca ero Mecto B
CeTeBOV apXWUTeKType MNporpaMMHO-onpegenseMoit cetu. MeTogonorma NpoBeAEHHOrO UCCNEAOBAHNUA SKCMEPUMEHTa BKIIOYAeT OMMCaHWe CreLmanbHOro
nporpaMmHoro obecneyenusa Cbench. B pabote Cbench sanyckanca B AByx pexuMax: pexuM 3a/lepXKW [Nl OTMPaBKW MOC/EAYOWMX NaKETOB U PeXuM
MaKCMMasnbHOM Nepefayun AaHHbIX /1A U3MEPEeHUA MPOMyCKHOM CnocoBGHOCTU. B pexuMe 3afepxkKn KAl KOMMyTaTop OTMPaBiAeT OAWH HOBbIN MaKeT B
3My/MpyeMblil MOTOK U oXupaaeT oTeeTa. [locne 3Toro oH OTNpaBNAET CneAyloLMi MakeT U Tak Aanee. 3aAepXKKa MoKasbiBaeT BpeMs, KOoTopoe Tpebyetcsa
KOHTponnepy Ana obpabotku 3anpoca OpenFlow npu HusKoit Harpyske. B pexkuMe monock! NponyckaHuA Kax/blii KOMMyTaTOp OTMpaBAeT 3anpockl A0 TeX
nop, noka He 3anonHutca Gycdep. TakuM 06pa3oM, STOT PeXuM MO3BOMAET UBMEPUTL MAKCUMasIbHYIO MPOU3BOAWUTENLHOCTb, C KOTOPOM MOXET CMpaBUTLCA
koHTponnep. Mo npeacTaBneHHON MeToguke Gbinn cobpaHbl SKCMepUMeHTaNbHble O6pasLbl CeTU. DKCMepuUMeHThl, criefytolme: |) korga KoMMyTaTop
pacnpefienseT HarpysKy Ha KOHTponnepsi 1, 2) Cbench reHepupyeT NOTOKM ANA KaX/A0ro U3 KOHTPONNEpOB oTaenbHO. MeHaeTca U peXxnM paboTbl NporpaMMbl
Cbench. Mo pesynbrataMm 3KCMepUMEHTOB MOMy4atOT AaHHbIE O KOJIMHECTBE MaKETOB, O6paBOTaHHbIX KaXKAbIM KOHTPONIEPOM B PasHbIX YCIOBUAX.

Kniouyeeble cnoea: npozpammHo-onpedensemas cems, npomokon OpenFlow, OpenDaylight, Cbench, npoussodumenbHocms KoHmposnepa.
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