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The paper presents the algorithm for estimating spec-
tral correlation function (SCF) of a wide-sense cyclo-
stationary random process. SCF provides the quanti-
tative representation of the correlation in frequency
domain and relates to cyclic autocorrelation function
via Fourier transform. The algorithm is based on two-
dimensional Fourier transform, which is being applied
to the discrete diadic correlation function weighted by
a two-dimensional windowing function, chosen rectan-
gular in the direction orthogonal to the current-time
axis. This transform can be implemented by means of
the fast Fourier transform (FFT) algorithm, which is
built-in in a variety of modern mathematical plat-
forms. A pulse-amplitude modulated process masked
by the additive stationary Gaussian noise was consid-
ered as an example of a random process exhibiting
strong cyclostationarity. The numerical simulation
where the estimation of spectral correlation function
of such process is conducted, and it proved the effec-
tiveness of the proposed algorithm.

Information about authors:
Timofey Ya. Shevgunov, Ph.D. (candidate of technical sciences), associate professor, Theoretical Radio Engineering department, Moscow Aviation Institute (National
Research University) "MAI", Moscow, Russia

Oksana A. Gushchina, Graduate student, Theoretical Radio Engineering department, Moscow Aviation Institute (National Research University) "MAI", Moscow, Russia

Ana uutuposaHua:
LLleszyHos T.Al., [ywuHa O.A. Vicnonb3oBaHue AByMepHOro npeobpasosanna Pypbe AN OLEHKU CneKTpanbHOM KoppenaumoHHoi dyHKumm //
T-Comm: TenekoMMyHukaumu u TpaHcriopt. 2021. Tom 15. N2l |. C. 54-60.

For citation:
IShevgunov T.Ya., Gushchina O.A. (2021) Using two-dimensional fast Fourier transform for estimating spectral correlation function.
T-Comm, vol. 15, no.1 I, pp. 54-60. (in Russian)

T-Comm Tom I5. #11-2021




1. Introduction

Signals used in engineering have a typical common property
which is their structural repeatability. This property underlies the
processes of their formation. Signals of animate and inanimate
nature also have a repeatability. Such signals are characterized
by "latent periodicity". The combination of randomness and pe-
riodicity is the property of "cyclostationarity".

Nowadays one of the major tasks to be overcome by means
of signal processing techniques based on the models representing
signals as realizations of cyclostationary random processes [1, 2]
is the non-parametric estimation of the cyclic characteristics of a
random process involving long digital samples.

There are some algorithms to implement cyclic spectral esti-
mation [3]. The earliest and most popular, which have a relative-
ly high performance, are Fast Fourier Transform Accumulation
Method (FAM) [4], which is based on Wigner-Ville sample
transformation, and Spectral Strip Correlation analyzer (SSCA)
[5]. But the estimators based on them can’t guarantee the ab-
sence of missing components of the cyclic spectra because they
do not cover the bispectral plane completely.

Over the past decades the significant progress in computer
capacity has happened. It has allowed the creation of new meth-
ods for cyclic spectral estimation which do not skip any compo-
nents of spectral correlation functions during the analysis. The
algorithms based on cyclic periodograms, or cyclograms, are of
interest: the double-length FFT estimator (2N-FFT) [6] and the
averaged absolute spectral correlation density (AASCD) estima-
tor [7]. But they have a drawback which is the large requirements
of computational resources, the performance of central processor
unit (CPU) and especially the capacity of random-access
memory (RAM).

The problem of finding a simple but computationally efficient
algorithm for estimation of spectral correlation function of random
processes remains relevant. The algorithm must be easy to imple-
ment, and the standard well-known building blocks should be used
as much as possible. Such an algorithm that could be a conceptual
analogue of the well-known Fast Fourier Transform (FFT), used
for the classical non-parametric spectral analysis [8], could be very
profitable for both scientific and engineering usages.

The paper presents the algorithm for spectral correlation es-
timation for the finite-length observations of random processes
based on two-dimensional fast Fourier transform. This technique
intensively used in image processing [9] rather than in the classi-
cal signal processing. The main idea is the application of this
transform to the windowed correlation matrix of the observed
signal, where the purpose of the windowing is to increase the
robustness.

The rest of the chapter is organized as follows. Section 2 in-
troduces the main cyclostationary characteristics used for de-
scription of non-stationary random signals. The proposed algo-
rithm for the estimation of the spectral correlation function are
described in Section 3. Section 4 presents the results of numeri-
cal simulation, which are compared with analytic solution. The
chapter ends with the conclusion.

2. Cyclostationary characteristics

The dyadic autocorrelation function depending on two time
instants for a wide-sense cyclostationary random process X(t)
with zero mean E{x(t)} = () can be described as:
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R(t,.t,) = B{X(t)X"(t,)} M

where [E{e} designates the probabilistic expectation and the

superscript * designates the complex conjugation.

More convenient in some cases is the two-dimensional corre-
lation function which is formed by changing the variables t;, t,
with:

| 2
t= ; )
=t —t,.

After replacement the following symmetric form of the two-
dimensional autocorrelation function (2D-ACF) is:

R.(t,7) =R (t+7/2,t—7/2), (€)

where 7 means the relative time, or the time shift between two
instants, where the correlation is evaluated, t means the current
time. Expression (3) can be expanded into the generalized Fouri-
er series of the current time t:

R, (t,7) = D R (z)exp(j27at): )
ach,

where A, is a countable set, the elements a of which are called

cyclic frequencies, and the coefficients of the series ’R;‘ (r)are

functions of the argument t. A countable set of functions
{RX“ (T)} , composed of nonzero coefficients, forms the cyclic

autocorrelation function (CACF). In turn, the coefficients
RX“(T) make up the components, or sections, of the 2D-ACF.

CACF is equivalent to the 2D-ACF in the same sense as the set
of Fourier series coefficients could replace the periodic signal.

Consider the component 'Rf(r) at a=0. One can notice,

that it always exists and it corresponds to the one-dimensional
time-invariant autocorrelation function that can fully characterize
a wide-sense stationary zero-mean random process:

ViR (t,7)=R)(z)- (5)

If the suggestion (5) does not hold, it will mean that the ran-
dom process X(1) is non-stationary. This automatically makes the
problem of its formal investigation extremely difficult unless the
expansion (4) remains valid leading to the cyclostationary case.
The above reasoning show that stationary in a wide-sense ran-
dom process can be considered a particular case of
cyclostationary in a wide-sense random process.

In case of a strictly periodic behavior of 2D-ACF (3), when it
reproduces exactly with the period T:

R.(4,7) =Rt +T,7)s (6)

the coefficients of its Fourier series can be numbered using an
integer index k:

Azz{a|a:$, keZ}n ™)

where 1/T is the fundamental frequency, which is reciprocal to
the period T.

e —
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Then Fourier series (4) can be presented in the form:

= . k
R, (t,7)= 2 kaﬁ (z’)exp(j27r?tj~ ®)

k=—o0
To determine the component Ri‘/T (1), it will be enough to

take the Fourier transform by integrating the 2D-ACF over one
period of its repetition [10]:

.
Rxm (Z')ZTLJ.RX(t,T)eXp(—j27T$tJdt' ©)
0

Fourier transform of each component R (7) gives spectral

components:

S(f)= [ R (2)exp(-j2z fr)dr (10)

The set of such components {35(“)( f )} build up the spectral

correlation function (SCF) of the random process, which pro-
vides the correlation description in frequency domain.

SCF can be expressed as a function of two continuous argu-
ments by means of generalized Dirac delta functions:

S, F)=>.8"(H)d(a-v)

veA

(11)

where the auxiliary v is used as a bound element in the summa-
tion. Such a function of two real variables has the meaning of
spectral correlation density (SCD), which is used instead of SCF
when one deals with finite-time observations of random process-
es in practice. SCD is a function of continuous cyclic frequency
rather than discrete.

If one applies the similar replacement for frequency variables
as in time domain (2) for ACF, namely:

_fi+f
2
a="f -1,

f ; (12)

then SCD can be rewritten in the functional form depending on
two frequencies f; and f,:

Sx(flafz)zsx(fl_ f,, fl-; fz)'

This bifrequency spectral representation of correlation (13)
can be evaluated as the probabilistic expectation:

S, (f.f,) =B{X(f)X"(f,)}

where X(f) is a random complex measure [11] that can be con-
sidered as the spectral density of the random process x(t) via
Cramer’s representation [12]:

(13)

(14)

x(t)= [ exp(j2z )X (f)df - (15)

Having taken the two-dimensional Fourier transform to ACF
Ry«(t1, t,) one obtains the density S(f;, f,):

S, (f,f,)= I I Rx(tvtz)exp[_jz”( ft, — fztz)]dtzdtl - (16)

where the integral is considered in the generalized or distribu-
tional sense [13] that leads to an arbitrary mixture of regular and
generalized functions.

The possible change of the ACF for its estimation in (16)
opens the road to the design of relatively simple and fast algo-
rithm for the estimation of the SCF (10).

3. Spectral Correlation Function Estimation

Consider the realization X(t) of the continuous-time random
process observed over the finite-time interval [0, Ty). Suppose
that the length of the observation is much greater than the maxi-
mal correlation time to be seen in the 2D-ACF (3) of the process:
T,>7, -

Then using uniform sampling of the realization X(t) acquire
digital signal of N samples X[n] = x(nTs), where Ts is the sam-
pling period. The estimation of ACF in discrete time as two-
dimensional sample function evaluates as follows:

A

R,[Nn,,n,]=x[nIx"[n,]. a7
which is a function of two time instants
R [n,n,]1=R (nT,,n,T,) (18)

defined on the compact support (t;, t,)€[0, T¢]x[0, Ty].

The estimator ﬁx[nl,nz] itself is not a consistent estimator
for the true SCF (10) as one can see in [13]. To obtain a con-
sistent estimator before using the transformation (16) an appro-
priate two-dimensional windowing has to be applied to (18).

There are different types of windows, lets focus on the sim-
plest one:

W[npnz] = rect(nl ;nzjzrect(tlA;tz]ZW(tptz)' (19)

w

This window is rectangular one, where d=A,/Ts, and A,
defines the width of the window in the direction parallel to the
line t; = —t,; the function rect(v) is defined as follows:

1, 1/2,
rect(v):{ |V|</

0,v[>1/2.

There are some restrictions on the choice of window length.
Firstly, the choice of excessively wide window inevitably leads
to the higher variation of the estimated SCD (16). Secondly, the
width Ay, of the windows w(t;, t,) does not have to be chosen less
than twice as short as the expected length of the maximal corre-

lation time of the processes Teor: A, > 27, -

Applying the window (19) to ACF (18) yields:

(20)

€2y

which is to be transformed by the two-dimensional discrete Fou-
rier transform (DFT):

R,[n,n,]=R [n,n,wn,n,].

N-1 N-1

S 5 .2
S.tm,m,]= ZZ Rx[nl’nz]exp[_JWﬂ(nlml _nzmz)}' (22)

n=0n,=0
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This transformation can be realized by very popular and well-
known fast Fourier transform (FFT) algorithm, which is availa-
ble on majority modern mathematical platforms.

The estimation of SCD Sy(f, ;) defined by (22) is equal
S~X[m1 ,m, ] multiplied by the factor T52 :

S(f,, f,)=T2S,[m,m,]. (23)

In order to move from bifrequency representation of SCD
(13) to representation (11), where one of the arguments is cyclic
frequency, one need to do the following:

S,(a,f)=S,(f+a/2,f -a/2). 24

Actually, the particular value of the cyclic frequency a de-
fines the straight line in the bifrequency plane (f, f;), according
to the equation f; = f, + a, whereas the frequency axis f is defined
alongside this line: f = (f; + f,)/2.

To obtain the estimation of the SCF (10) from SCD (11) it is
necessary to use scaling factor as follows:

A, 1 -

8i(f)==8,(a.1) (25)

X

As you can see from (25) the units of measurement for spec-
tral correlation function and spectral correlation density differs.
So, if the process under investigation is measured in volts, SCF
will be measured in [V?s] and SCD will be measured in [V?s?].

4. Numerical Simulation

Let us demonstrate the performance of the proposed algo-
rithm by the numerical simulation, where the estimation of SCF
is carried out. As example of random process [14] choose the
process with strong cyclostationary properties. The regular peri-
odic pulse train, where each pulse has the same waveform, but
the amplitudes are random, is suitable for such description. This
signal is also known as pulse-amplitude modulated (PAM):

X(t) = Zw: Ab, rect(t _AqT j g

gq=—o0

(26)

where A is the amplitude, A is the width of the pulse, T is the
period, by are independent identically distributed (i.i.d.)
Rademacher random variables with zero mean E{A\}} —(0anda

finite variance:

L p=q;
E{bb}= 27
By} {Q p=aq.
Figure 1 demonstrates the typical realization of the PAM (26).
o‘\x [
p () B
&\ e
—.T___._2.T . AT ST t
T 1 11T
_A 4

Fig. 1. A typical realization of the PAM random process
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The rectangular form of each pulse in (26) provides the
closed-form analytical expression [14]:

SinC|:7Z'(f + 2)AJsincL7r(f - 2JAJ= (28)

where sinc(V) = sin(V)/v, complemented to a continuous function
by setting 1 atv=0.

The expression (28) can be explicitly used for further com-
parison.

The following simulation parameters were used for the pa-
rameters of the random process (26): the amplitude A = 1 V, the
width of the pulse A =5 ps, the period T = 27; the sampling peri-
od Ts=1/16, the number of samples N =4096 , the observation
time Ty = NTs. Thus, there are T,/T = 128 totally observed within
the observation time Ty. The width A,, of the window (19) is cho-
sen a bit more than double the correlation time: Ay = 2.17¢r,
since the one-side correlation time 7., is equal to the pulse width
A for this kind of processes. A stationary Gaussian noise z[Nn]
with the uniform power spectral density (PSD) was added, so the
signal-to-noise ratio (SNR) is as low as 0 dB.

Figure 2 demonstrates the intensity two-dimensional diagram
of the absolute value of the estimated spectral correlation densi-
ty, which gives one the full information about correlation in fre-
quency domain.

242

se(fy=28

i SCF (amplitude) in logarithmic scale

0
-0.6 ]
) 0.5
S04t i B
Z 02 1.3
Y -2
g OR = 25
2
£ 02 A
2 )
2, 04} 3.3
~ 4
0.6
4.5
-1.5 - 0.5 0 0.5 1 1.5

Frequency f, in MHz

Fig. 2. The color intensity plot for the SCF estimation
of the PAM process

It is difficult to determine the values of the cyclic frequencies
characterizing the random process from the plot in fig. 2. The use
of the integral characteristic [7]:

Fmax

l(a)= j

=

~ Fmax

(29)

S (a, f)df >

allows one to solve the above problem, where F,, is a frequency
determined by the borders of the principal domain [15]:

=2l
2( T

This characteristic, showed in fig.3, allows one to estimate
the pseudo-power concentrating on each cyclic frequency.

(30)
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Examining the figure 3 one can conclude that the strong
cyclostationary of the process under investigation presents at
cyclic frequencies that are multiples of 1/T = 0.1 MHz.

i Integral characteristic [(«)

~ 08F .
-
;’ 0.6 .
)
{=9
S 04} .
=
02+ ' :
0 . . . i . . .
08 06 -04 -02 0 0.2 0.4 0.6 0.8

Cyeclic frequency e, in MHz

Fig. 3. The integral characteristic (pseudo-power) at cycle frequencies

Figures 4-7 shows the analytic (25) and experimental curves
of the absolute value of several initial components of the SCF.

Figure 4 presents the SCF at a = 0. It is the power spectrum
density of the random process under investigation. The presence
of additive stationary noise with the constant PSD leads to the
location of estimated curve under analytical one.

Amplitude SCFata =0

3 - -
A Estimated
N 23T Analytic |
et
r:z 2r T
—
815
Z
8 1f ]
é’J
0.5¢F .
e — — -
(] 1 1 L L 1 L L 1
-1 0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 |

Frequency f, in MHz
Fig. 4. The SCF component at zero cyclic frequency
Figure 5 shows the component of SCF at a = 1/T. The curves

almost coincide because of absence of cyclostationarity in the
additive noise.

Amplitude SCF at a = 1/T

2.‘3 T T T
Estimated

N 2t Analytic
r“l‘E
s 15 4
R=|
2 1t .
5
Q05 .

U — s 1 i 1 o . . ! To—

-1 08 -06 -04 -02 0 0.2 04 0.6 0.8 1

Frequency f, in MHz
Fig. 5. The SCF component at o = 1/T

Figure 6 demonstrates the second component of SCF at
a=2/T. The difference between the estimated and analytic
curves becomes slightly larger.

% Amplitude SCF at a =2/T

Estimated
N 1 F Analytic |
208 1
-
BH06F
2
704 -
o
A 02F ]
——— I I B o~ A, e LI
0
-1 0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 |

Frequency f, in MHz
Fig. 6. The SCF component at o = 2/T

Figure 7 shows the third component of SCF at o =3/T. The
difference is even greater, especially at frequencies over than
0.5 MHz, where the values of the component itself is relatively
small.

So, one can conclude, that the estimation error tends to in-
crease as the component number becomes greater.

5 Amplitude SCF at a« = 3/T
e T T T T T

Estimated
Analytic

=
h

T
L

= E )
Density, in V-MHz
= = =
[ ST R N

0 — - I 1 i L
-1 08 -06 -04 -02 0 0.2
Frequency f, in MHz

Fig. 7. The SCF component at o = 3/T

L

04 06 08 1

5. Conclusion

The algorithm, proposed in this paper, allows one to estimate
effectively the spectral correlation function of wide-sense
cyclostationary processes. It reveals the cyclic frequencies exhib-
ited by the process in case of a long finite-time observation of the
process is available. This algorithm allows to avoid missing any
SCF components by covering of the bifrequency plane that is
dense enough.

The comparison, made between the estimated components of
the SCF of the process with strong cyclostationary behavior,
obtained by numerical simulation, and the curves drawn for their
analytical expressions, has proved the effectiveness of the algo-
rithm.

With an increase in component number of SCF, starting from
the first one, the difference between the analytic and estimated
curves becomes larger. It can be explained by the more sensitive
of higher components to the influence of the noise.
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To make the estimation of the spectral correlation function
sufficient it is necessary to apply the window function, which is
reduce the variance of the noise. The rectangular window allows
to obtain the consistent estimate of SCF, but the further task for
investigation can be the formal search for the best shape of the
window and the optimal window width for the bias-variance
trade-off.
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AHHOTauua

B HactosLwent paboTe npeAcTaBneH anropuTM OLEHMBAHUA CMEKTpasnibHOM KoppenaumoHHon ¢yHkuum (CKD) Ha ocHOBe KOHeYHbIX No
ZNTENbHOCTY peanusauuit cnyyvaiiHoro npouecca. CK® apnseTca AByX4aCTOTHBIM OMMCAHWEM BEPOATHOCTHBIX CBOWCTB LIMKIIOCTALMOHap-
HOrO B LUMPOKOM CMbIC/Ie CJTyHaitHOro MpoLiecca U CBA3aHa ABOWHbIM NpeobpasosaHneM Dypbe ¢ ero AByMepHON KOPPENIALMOHHOM byHK-
uveit. B npeanoxeHHoM anroputMe AByMepHOe AUCKpeTHoe npeobpasosatune Pypbe (AMND) npuMeHaeTca K oTcu&TaM AUCKPETHON ABY-
MEpPHOM KOpPEeNALMOHHOM (PYHKLMK, B3BELLEHHOM ABYMEPHOM OKOHHOM (pyHKUMEN. [1nA yMeHbLUEHWA AMCNEpCUM LLyMa OKOHHasA (pyHKLMA
BblIOpaHa yHKUMA, UMetoLLas NPAMOYrosibHbIM NPpodWb B HanpaBieHUN, MEPNEHANKYIAPHOM TekyLleMy BpeMeHu. [pyMepHoe AP Mo-
XKeT ObITb peasiM30BaHO C MOMOLLbIO anroputMa GbicTporo npeobpasosaHus Pypbe, peasiM3oBaHHbIM B CTaHAAPTHbIX GubnnoTekax 6onb-
LUMHCTBA COBPEMEHHbIX MaTeMaTM4Yeckux nakeTos. PaboTa npeanoxeHHOro anroputMa MpoJEMOHCTPUPOBaHA HAa MPUMEPE OLIEHMBaHUA
CK® apgantrBHOM CMecu nocneAoBaTeNlbHOCTM UMMYSIbCOB CO CITyHaiHbIMU aMMIUTYAaMU U CTaLIMOHAPHOTO rayccoBckoro wwyMa. [penmy-
LLIECTBOM MPEAJIOXKEHHOTrO B HacTosALLel paboTe anroputMa ABNAETCA TO, YTO 3a CYET JOCTATOYHO MNOTHOTO MEPEKPLITUA ABYXHACTOTHOM
MJIOCKOCTM OH No3BonsAeT usbexartb npomnycka koMnoHeHT CK®. AnroputM, NOCTPOEHHbIN Ha OCHOBE NMpeAsIOKEHHOrO METOA], NPeACTaB-
nAeT cobor npoctort n 3PhEKTUBHBIN MHCTPYMEHT aHanuW3a AJIMHHOW peanu3aumy UMdpOBOro cUrHana As BbIABMEHUA LIMKINYECKUX
CBOWICTB 3a CHET AeTajlbHOro aHann3a B LUMPOKOWN NOIoce LMKIIMYECKUX YacToT.

Knroueeble cnoea: uuknocmayuoHapHOCMb, UUKIUYECKAA 4ACMOMA, CNeKMpanbHAA KOPPENAUUOHHAA (PyHKUUA, CNEKMPAsbHAA KOPPEeNAUUOHHAA
nnomuocms, deymepHoe BI®, 6eicmpoe npeobpazoeaHue Pypbe, ncesdo-mousHOCMb.
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