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Recently, fractional calculus has been the focus of attention of many
researchers in the field of science and technology, since a more
detailed study of physical processes leads to the need to complicate
the mathematical models that describe them, and, consequently, to
the study of the behavior of solutions of differential equations con-
taining, along with " ordinary", or "classical", derivative, also frac-
tional. Processes of this kind can include: studies of continuous
media with memory, fluid filtration in media with fractal geometry,
physical aspects of stochastic transfer and diffusion, mathematical
models of a viscoelastic body, models of damped oscillations with
fractional damping (for example, vibrations of rocks during earth-
quakes or vibrations nanoscale sensors), models of non-local physi-
cal processes and phenomena of a fractal nature; climate models,
etc. The paper studies boundary value problems for the equation of
motion of an oscillator with viscoelastic damping (the Begley-Torvik
equation) in the case when the damping order is greater than zero
but less than two. Such problems model many physical processes,
in particular, the vibration of a string in a viscous medium, the
change in the deformation-strength characteristics of polymer con-
crete under loading, etc. This paper is devoted to optimizing the
parametric control of the Begley-Torvik model. A fundamentally
new, efficient algorithm is proposed that allows estimating the
parameters of a model of real material.
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Introduction

Fractional calculus is a mathematical field that deals with in-
tegrals and derivatives of arbitrary order. Although the concept
dates back to 1695, it was only in the last century that the most
impressive advances were made. In particular, over the past three
decades, fractal theory [1], fractional differential equations have
found applications in physics, signal processing, engineering, bi-
ological sciences and finance [2, 3, 4].

First of all, we note that fractional derivatives with respect to
space can be used to model anomalous diffusions or dispersions,
and fractional derivatives with respect to time can be used to
model some processes with "memory".

It is known that it is expedient to model the stress-strain state
of viscoelastic materials using fractional differential operators
leading to differential equations with fractional derivatives.

Of particular interest are second-order differential equations
with fractional derivatives in lower terms. Such equations, in par-
ticular, are used to describe the vibration of a string, taking into
account friction in a medium with fractal geometry, or to simulate
changes in the deformation and strength characteristics of polymer
concrete (polymer concrete is a type of concrete mixture made on
the basis of one of the synthetic resins) under the action of loads.

On methods of using fractional calculus in problems
of viscoelastic media modeling

In this paper, samples of polymer concrete based on polyester
resin were taken for research. As a polyester resin, polyesters
based on diane and dichloride-1,1-dichloro-2,2 di (n-carboxy-
phenyl) ethylene. Although all polyester resins are similar, a wide
range of mechanical properties can always be achieved in their
production by changing the basic constituents and their propor-
tions. In our case, polymer concrete is represented as a set of min-
eral aggregate granules in a viscous medium of polyester resin.

When modeling the deformation-strength characteristics of
polymer concrete, it can be represented as a set of solid filler gran-
ules located in a viscoelastic medium. Then [3], the transverse mo-
tion of the filler granule under the action of loads (applying an
external force) can be described by the equation (this equation is
called the Begley-Torvik equation [3]) of the fractal (fractional)
oscillator:

m-u"(x) + v DG u(x) + k-u(x) = {(x), (1)

where u(x) — granule displacement, x € [0; (],

m — filler granule weight,

v— resin viscosity modulus,

k — resin stiffness modulus;

a — medium viscoelasticity parameter,

¢ — external force.

Definition: D*u(x) — is the fractional differential operator of
order a € [0; 2] in Riemann-Liouville sense, i.e.:

1) fora €[0;1]

2)

Dou(x) = * u(r)dr >’

d 1
5(r(1 -a)l), (x—1)*

where I'(x) — is the Euler’s gamma — function;
3) fora € [1;2] we have

Dfu(x) =

d? 1 * u(r)dr
dx? (F(Z -—a)), (x— ‘[)“‘1>'

Note [4], that for @ = 1, the equation (1) transforms to the
well-known equation

m-u"()+vu(x)+k-u=<(x), 2)

which describes the movement (in asphalt concrete) of a granule
of mass m under the action of a load ¢ (x) from moving vehicles,
which is widely used in road construction.

It should be noted [5]-[7] that rutting of roads can be formed
with any type of road surface.

For a=0.7 the equation

m-u"(x)+ v-D¥7u(x) + k-u = ¢(x), 3)

beings [2] a good constitutive model for elastomeric bearings
(elastomeric bearings are currently used as insulating bearings to
protect building bridges, etc. from earthquakes).

This paper is devoted to the optimization of the parametric
control of the Begley-Torvik model. A fundamentally new, effi-
cient algorithm has been proposed that allows estimating the pa-
rameters of a model of real materials.

First of all, we give the following well-known statement [8, 14].

Theorem 1. Solution of the boundary value problem

u”(x) + cD%u(x) + Au(x) = 0; 4)
u(0)=0u() =0. (5

can be found using a sequence of recurrent kernels and written
out as a power series

(6)

n _ _
n ( )len mx2n+1 ma
2"

ul) =x+ nzl(—l)” r2n+2 —ma)

m=0
The eigenvalues are found as solutions to the implicit equa-

tion:
(n ) len—m

oo n
— _1\n+1 m
1 Z( D Zl"(2n+2—moc)1
n=1 m=0

Relation (7) will be used below to determine the order of the
fractional derivative.

2n+1—ma. (7)

Method for determining the parameters
of the Begley-Torvik model

It is known [3] that to model the deformation-strength charac-
teristics of viscoelastic materials, the equation

o(t) = E;DPe(t), (8)

where o () — the stress, g(t) — the deformation, E1and0< <1
— parameters of the matherial. Here,

L ©
Ol

0

D/ f(t) =

fractional Caputo derivative, of order 3, to be determined.
In numerous publications of the last ten years, the problem of
identifying the parameters of fractional models is mainly solved
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at the theoretical level, for example, using spectral analysis meth-
ods. As noted in publications, in particular [9] V.P. Radchenko
E.N. Ogorodnikov L. G. Ungarova, in the papers of T. S. Aleroev
[8], [10], the model parameters are determined based on several
characteristic points obtained in the experiment by substituting the
strain values into the analytical solutions of the corresponding
problem.

In this paper, the same technique is used to determine the order
of the fractional derivative in the problem for the Begley-Torvik

equation
u”"(x) + cD*u(x) + Au(x) = 0; (10)
w0 =0u'() =1; (11)
here D*u(x) — is the fractional differential operator of order @ €

[0; 2].
In [10],[13], solution (10) -(11) was calculated using a se-
quence of recurrent kernels and written out as a power series,

(::l)cmln—m

m=0r(on+2-ma)

2n+1-ma

u(x) =x — Yoo (=" (12)
In order to shade the main ideas of this technique, we first of
all dwell on the paper [10],[13], which describes a technique for
determining the order of the fractional derivative.
In this paper, to determine the parameter B, in (8) it is assumed
that the tension of the material is given linearly.

e(t) =kt (13)
Taking into account the well-known formula
t1h
DBt = —
ACZ-B)
we obtain
KE
o(t)=————t" =—_[s(t)]
r2-p5) 1“(2 ,3)
Designated as A = Ky we have
& ey
a(t) = Ale()]* . (14)

Thus, in this case, the stress depends on the strain according to
the power law. To determine the 3 it suffices to know the results
of two measurements £(t1) and &(t2).

Of course, in nature, deformation is a far from linear function.
But if it is possible to establish the parameter  for the case of
linear loading, then, by the existence and uniqueness theorem for
equation (8), it can be argued that this parameter is invariant and
does not depend on the type of loading function.

In this paper we apply the same technique to determine the pa-
rameters of the Begley-Torvik model. To do this, we divide the
interval (0,2) where the possible order of the fractional derivative
is located into N equal parts (N is any natural number). And con-
sider the tasks

u” (x) + cD%*u(x) + Au(x) = 0;

i=1..N; (15)

u(0) =0,u'(D) = 1; (16)
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Figure 1 shows graphs for solving these problems for various
values of the order of fractional differentiation.

0.10
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Figure 1. Problem solving graphs for 0 <a <2

First of all, we note:

a) that we proceed from the fact that the process under study is
described by one of the tasks (15-16);

b) he existence and uniqueness theorem holds for these prob-
lems;

¢) no matter how large N is, there is an interval (y, 8) included
in (0,2), where the graphs for solving problems (15-16) do not in-
tersect.

And now we will make the following important remark: when
planning an experiment, take into account that we will be inter-
ested in experimental data or field measurements of the quantity
u(x) forx € (y, B).

Now take any point x, form the interval (y, ) and mark on
the plane, where the graphs of solutions are shown, a point with
coordinates (Xq, u(xy)) (u(xq) we obtain from the experience).

The graph from figure 1, which passes through this point, will
be the graph of the solution of the problem that this process mod-
els.

In order to more accurately determine the order of the frac-
tional derivative, it is necessary to solve the following equation
for a

n (n) mln—mx02n+1—m(l

u(xp) = xo + Z( n* Z r2n+ 2 —ma)

m=0

a7

Generally speaking, this equation can have several roots (this
does not contradict the existence and uniqueness theorem, since,
generally speaking, the roots are found not of equation (17), but
of the equation

n (n) mln—mx02n+1—ma

ulxo) = xo + Z( n” Z r@2n+2 - ma) )-

m=0

Of these, the desired root will be the one that induces the graph,
which at the point xo deviates less than all other graphs from the
point (Xq, u(Xg)).

For an approximate calculation of the sum of the series in (17),
we take the first 80 terms. Thus, we solve numerically for a the
following equation:

n _ -
n ( ) cman mx02n+1 ma

u(xp) = xo + Z( n* Z r@2n+2 —ma)
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Once again, we note that, for our polymer concrete c=1.2, 4 = 89.

Note that there are practically no papers devoted to solving
such equations, and therefore questions related to the accuracy of
the solutions obtained remain open.

Results analysis

We test the above method on the example of the above poly-
mer concrete.

In order to test the technique, we take the experimental data
obtained in [10]. Values for polymer concrete samples based on
PES (dian and dichloanhydride-1,1-dichloro-2,2-diethylene) are
presented in Table 1.

Table 1
Experimental points for polymer concrete samples
X (©) | 027 0,4 0,68 1,1 1,3 1,6
U, 0,06 | —0,038 | —0,0098 | 0,018 | —0,0097 | —0,01

In order to determine the order of the fractional operator, con-
sider the integral curves of the following Cauchy problem (Fig. 2)

my" + cD&.y + Ay =0,
y(0)=0, »'(0)=1,
for different ¢, C, A.

y
0.08

— y(x, 1.5, 1.8, 90)
— y(x,1.5,1.8,93)
— y(x, 1.5, 1.8, 96)

0.06

0.04

0.02

-

-0.02+

-0.04+

Fig. 2. Solutions of the Cauchy problem for the oscillator model with
RT damping at « = 1.5, ¢ = 1.8, 1 =90,93,96

y
0.08
— y(x,1.5;1.7; 93)
e — y(x,1.5;1.8;93)
0.04} — y(x,1.5;1.9;93)
. e X
0.5 1.0 WO
-0.02]
-0.04]

Fig. 3. Solutions of the Cauchy problem for the oscillator model
with RT damping at e = 1.5,¢=1.7,1.8,1.9, A =93

Analysis of the graphs in Figures 2 and 3 shows that to deter-
mine the order of the fractional derivative, it is sufficient to choose

an interval where these graphs do not intersect. Taking any point
from this interval, we look at the value of the solution at this point.
And this value is compared with experimental data. Experimental
data [11] relevant for this case are given in Table 2.

Table 2
Experimental data

(0,46; 1,03)

(0,47 1,02)

(0,48; 1,0198)

(0,49; 1,018)

(0,50; 1,0178)

(0,51; 0,93)

(0,52; 0,83)

(0,53; 0.,5)

(0,54;0,2)

(0,55; 0,18)

(0,56; —0,01)

(0,57:-03)

(0,58, - 0,61)

(0,59; -0,93)

(0,60; — 0,96)

(0,61;-0.21)

(0,62; - 0.8)

(0,63;0.21)

(0,64; 0,24)

(0,65; 0,301)

(0,66; 0,32)

(0,67; 0,38)

(0,68; 0,41)

(0,69; 0,43)

(0,70; 0,431)

To choose an interval where the graphs of the corresponding
solutions do not intersect, we present the graphs of the solutions
of the corresponding problems for different values of the order of
fractional differentiation.

In accordance with our methodology, for the interval (y, ) we
can take the interval (0.35,0.45), and for the point x, we take
Xo=0.4. And then the problem of finding « is reduced to solving
the following equation

~ (1) 1.2m897m (—0.038)2m1ma
> (19)

80
—0.038 = 0.4 E —-n m
* 1( ) Ir2n+2-ma)
=

m=0

Making the corresponding calculations using MATLAB, we
get that o =1.4.

Thus, when it comes to samples of polymer concrete based on
PES (dian and dichloanhydride-1,1-dichloro-2,2-diethylene), the
equation of motion has the form

u'(x) + 1.2 DX u(x)+89-u=0 (20)

The same problem was solved in the standard way in [10].

The unknown parameter « is located there minimizing the de-
viation of the theoretical curves from the experimental ones. That
is, defining the deviation function by the least squares method

N
F(@) = ) (U~ u(x, @)Y
i=1
Here
u(xi) = Ui,i = 1,...,N

several experimental points, and u(x;, @)- theoretical points cal-
culated by formula (12).

The unknown parameter @ is selected minimizing the devia-
tion of the theoretical curves from the experimental ones.

The accuracy of the result obtained by this standard method
depends on the sample size (the larger the sample size, the more
accurate the result) and how accurate the U; measurements ob-
tained as a result of the experiment are.

The application of our technique leads to much more accurate
results and does not require the costs of the experiment, which are
necessary when implementing the standard technique given in
[10].

And finally, as shown in Figures 1-3, the frequencies and am-
plitudes of the oscillations of the granules depend on the parameter
a. In turn a, as mentioned, it characterizes the viscoelasticity of
the medium (i.e., it completely depends on the physicochemical
properties of the resin). So that the oscillation amplitudes do not
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go beyond the permissible limits, the intervals for changing o must
also be clearly defined.

The method presented in this paper also solves this important
problem. Since the optimal control of the parameter ¢ makes it
possible (using directed synthesis) to synthesize polyester resins
with the required strength characteristics.

Let us give an example of using the developed technique in
modeling viscoelastic properties and hysteresis damping of
springs made of composite materials using fractional calculus
[12]. In this case, the parameter on which the deflection of the
spring depends (the spring test scheme is shown in Figure 4).

Fig. 4. Spring test is the order of the fractional derivative,
the method of estimating which we have given above

Conclusion

The method of parametric identification of the order of a frac-
tional derivative proposed in this paper allows us to solve a num-
ber of inverse problems in fractional calculus. In particular, to de-
velop an effective method for optimizing the parametric control of
the Begley-Torvik model.
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AHHOTauuA

B nocnegHee BpeMsa ApobHOe UCHUCTIEHWE HAXOAWTCA B LIEHTPE BHUMAHUA MHOTUX UCCIefoBaTenell B 061acTy HayKM U TEXHUKM, TaK Kak
6onee getanbHoe uccneaoBaHne GU3NHECKUX MPOLIECCOB MPUBOAAT K HEOBXOAMMOCTU YCIOXKHEHUA MaTeEMaTUYECKUX MOAENEN, X Onu-
CbIBAIOLLMX, U, CIIeOBATENbHO, K UCC/IEA0BAHMIO NMOBEAEHNUA peLueHni AnddepeHLmanbHbIX YpaBHEHMI, COAEpXKaLLUMX, HapaBHe ¢ "0bbIy-
Hoi1", unmn "knaccuueckon”, npounssogHon, ewwe u ApobHyto. K npoueccam Takoro poga MoryT GbITb OTHECEHBI: UCCIIEA0BAHNSA CIITOLIHBIX
CpeA C naMaATbio, GUNLTPaLWA XKUAKOCTU B cpeAax ¢ hpakTasibHOM reoMeTpueit, pusnyecKkme acnekTbl CTOXaCTUHECKOro nepeHoca n And-
dy3un, MaTeMaTU4ecKMe MOAENM BA3KOYMPYroro Tena, MOAeNU 3aTyXatoLmnx konebaHuin ¢ ApobHbiM geMndurpoBaHneM (HanpuMep, Kose-
6aHUA rOpHbIX MOPOZA MPY 3EMNETPACEHUAX UMM KonebaHWs HaHOPa3MepHbIX CEHCOPOB), MOAENWN HEMOKasbHbIX PU3UYECKMX MPOLIECCOB
1 ABNEHUN ppaKTanbHOW MPUPOAbI; KIMMaTUYeckue Modenu U T.4. B pabote msyyatotca KpaeBble 3a4a4M A8 ypaBHEHUA ABWXKEHUA OC-
LMnnaTopa ¢ BA3KOYNpyruM AemnduposaHuem (ypaBHeHue bernu-Topeuka) B cnyyae, Koraa nopagok geMndupoBaHua 6osblue Hysns, HO
MeHbLUEe BOMKU. Takue 3a4a4u MOAENUPYIOT MHOrMe dbusnyeckue NpoLecchl, B YaCTHOCTH, KonebaHue CTpyHbl B BA3KOW cpele, U3MeHe-
Hue AedOpMaLMOHHO-MPOYHOCTHBIX XapaKTEpPUCTUK nonuMepbeToHa npu Harpy>keHun u Ap. [aHHoi paboTa moceslleHa ONTUMM3aLmK
napaMeTpuyeckoro ynpaeneuus Moaenu bernu-Topeuka. MNpeanoxeH npuHUMNWANbEHO HOBbIN, 3dEKTUBHBIN ANIFOPUTM MO3BONAIOLLMM
OLIEHWUTb NMapaMeTpbl MOAENMN peasibHbIX MaTepUasioB.

Knioqeeble cnoea: ypasHeHue beznu-Topsuka, 0pobHoe ucqucieHue, 8A3Koynpy2ocmsb, Kpaeeas 3adayud, 3/1aCmoMepHbIl NOOWUNHUK, udeHmupukayus
napamempa, éaskoynpyzas cpeda.
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