ELECTRONICS. RADIO ENGINEERING

IMPLEMENTATION OF COSINE MODULATED DIGITAL FILTER
BANK ON PROCESSOR WITH ARM ARCHITECTURE

DOI: 10.36724/2072-8735-2020-14-11-57-63

Kirill Yu. Sokolov, o . Manuscript received 14 September 2020;
Moscow Technical University of Communications and Informatics Accepted 20 October 2020

(MTUCI), Moscow, Russia, sokolovkirilluy@gmail.com

Vladimir S. Priputin,
Moscow Technical University of Communications and Informatics
(MTUCI), Moscow, Russia, v.s.priputin@mtuci.ru

Elizaveta O. Lobova, Keywords: cosine modulated filter bank, discrete
Moscow Technical University of Communications and Informatics cosine transform type 4, graphics processing unit,

(MTUCI), Moscow, Russia, lizabeth2@mail.ru OpenCL, ARM processors, computational complexity

This paper presents a class of multichannel cosine-mod-
ulated filter banks (CMFB) of analysis based on the mod-
ulation effect with a fast discrete-cosine transformation
of the fourth type (DCT-IV), which is calculated using
the fast Fourier transform. As a prototype filter, a low-
frequency filter with a finite pulse characteristic was
used, frequency-shifted copies of which were made using
an effective technology for polyphase representation of
the filter Bank. The comparison of the number of arith-
metic operations performed by digital down converter
(DDC) based on cascade integral-comb (CIC) and CMFB
based on different number of channels is given. A soft-
ware description of the CMFB algorithm is presented in
the form of block diagrams describing the capabilities of
the Opencl and clfft software libraries for implementing
the DCT-IV filter Bank and modulation algorithm on a
GPU. The obtained algorithm was tested on an ARM
family processor and a mali GPU with a table with sam-
ple rate for different number of channels with the max-
imum load of the graphics processor (GPU) and the
minimum load of the Central processor (CPU).

Information about authors:

Kirill Yu. Sokolov, Moscow Technical University of Communications and Informatics (MTUCI), engineer of the first category NIL-4807 NICH MTUCI,
Moscow, Russia

Vladimir S. Priputin, Moscow Technical University of Communications and Informatics (MTUCI), Ph.D. head of laboratory NIL-4807 NICH MTUCI, Moscow,
Russia

Elizaveta O. Lobova, Moscow Technical University of Communications and Informatics (MTUCI), junior researcher NIL-4803 NICH MTUCI, Moscow, Russia

Ana umtuposaHua:
Cokosnoe K.FO., Mpunymun B.C., JToboea E.O. Peanusauus KocuHycHo-modynuposaHHbIx uugposbix ¢puabmp 6aHkos Ha 6ase npoueccopa ¢ apxumekmypoui ARM /I
T-Comm: TenekoMMmyHuKkaumm n TpaHcnopt. 2020. Tom 14. Nel 1. C. 57-63.

For citation:
Sokolov K.Yu., Priputin V.S., Lobova E.O. (2020) Implementation of Cosine Modulated Digital Filter Bank on Processor with ARM architecture. T-Comm,
vol. 14, no.l I, pp. 57-63. (in Russian)

T-Comm Vol.l14. #11-2020

ELECTRONICS. RADIO ENGINEERING

Introduction

One of the most effective tools for building broadband data
transmission systems is the digital filter bank, which is a set of
similar digital bandpass filters designed to divide the input signal
samples into several sub-bands (sub channels) that evenly cover
the entire frequency range under study.

Figure 1 shows a typical scheme for building M-channel filter
banks. At the first stage, the input samples of the signal fall into
the delay line, and the signal is split into sub-band components
using analysis filter banks. Since the received sub-band signals
have a limited frequency band, it is necessary to lower their
sampling rate, which is carried out using decimators, and the
decimation coefficient depends on the number of channels. At
the second stage, additional processing is performed in the sub-
band processing unit in order to clear the noise. At the third
stage, the signal is restored from the sub-band components using
the analysis filter banks, where the sampling rate is reversed by
interpolating the signal samples. Obviously, the use of
decimators and interpolators in sub-band processing creates the
problem of decimation noise at the analysis stage and
interpolation errors at the synthesis stage, but reduces the number
of mathematical operations.

analysis synthesis

s IM | Haa@) [ol M e Far(z)

Sub-band
Hiz) [processing—~ TM |

0 b M Fl(Z)

x(n)

x(0) IM [~ Hoz) [ol M | Fi@)

Fig. 1. Basic block diagram of filter banks representation

Filter banks based on the modulation effect and the use of a
low-pass filter of the prototype are widely used, followed by
obtaining its frequency-shifted copies so that the set of filters
covers the entire operating frequency range.

Cosine modulated filter bank

Cosine-modulated filter banks do not always have full
recovery properties, but by optimizing the coefficients of the
prototype filter, you can achieve the required accuracy.
However, since only the analysis filter bank is considered in this
article, the expression for the impulse characteristics of filters
takes the following form:

hp(n)=J%h(n)cos((k%jﬁmﬂfz”n (1)

M — the number of channels, k= 0,1...M —1 is the
n= 0,1..2mM —1,m is
coefficient, and h(n) is the coefficients of the prototype filter.

channel number, the overlap

When comparing the modulation sequences and the basis
functions of the discrete cosine transformation of the fourth type
(DCT-IV), we can conclude that the necessary modulation

functions can be implemented using M * M DCT-IV matrices,
which are symmetric in structure and satisfy the following rules:
CTc=cCT =1, I is the identity matrix. Modeling has
confirmed the effectiveness of this method in constructing digital
filter banks with a large number of channels and high frequency
selectivity. The amplitude-frequency response of the prototype
filter and the resulting cosine-modulated filter bank is shown in
figure 2.

|H(2)|
1 1 ()
TS
lH,(2)] H,(2)] H,,(2)]
I 1 \I 1 1 .
= a 2 T .
M M 7 L v A

Fig. 2. Frequency response of the prototype filter
and the cosine-modulated filter Bank

Polyphase representation of filter banks

The implementation of cosine-modulated filter banks
proposed in this article is based on an effective scheme for the
polyphase representation of the prototype filter [1] shown in
figure 3.

z7 1M —GZM-](—?.E) 1

P—

* —* —
x(n)
I e
1 M —
x(@)——{ M [+ Ga(-z) |

Fig. 3. Block diagram of a cosine modulated filter bank

The algorithm of operation of this filter Bank implies the
passage of input samples of the signal through the delay line,

where the number of, the number of z!lis equal to 2M-1,
followed by their decimation in |[M-decimators [7], the number
of which is equal to twice the number of channels in the
prototype filter (2M), and the decimation coefficient is equal to
the number of channels (M).

At the next stage, filtering is performed due to the polyphase
representation of the prototype filter, as a result of which the
impulse response of the original filter is decomposed as follows:

T-Comm Tom 14. #11-2020

~Gyyya(-27)
-G,(-2*) |,)
~G/(==)

| —G(==) |

Gz(') is expressed in the form 2M of polyphase

components using polyphase filters of type one, hp (n) is the

prototype filter:
2M -1 m-1 2M-1 (3)
H,(z)= Y Y h,(1+2pM)z200 = 3 274G, (27
=0 p=0 1=0

The third stage is the representation of a transposed matrix C

containing submatrices f 2M * M dimension
M /2 *M /2, the matrix J is a reverse matrix I:
0 -7
|0 J 4)
lJ 0
1 O 2M*M
1 0
1= (%)
0 1 |mnm
2 2
0 1
J= (6)
L0 Jar,m
2 2

At the end, the calculated values fall into the DCT-IV
transformation block, which contains M inputs and outputs.

Fast DCT-IV using fast Fourier transform

At the first stage there is an input vector with real numbers of
length M: x(n) =0,1...M —1 which is re-formed as follows :

xn <~ x2n (7)

Xpimr2 € Xpro1on (®)

n= 0,1,...M/2—1, the < sign indicates the transfer of

samples from one part of the vector to another.

At the second stage, need to get an M-element complex
vector, which will be divided into two vectors. The first vector
will contain real components:

: _ilas D) m ©)
X, (—Re[(xn +]xn+g]exp[](n+4jMJ]

And the second vector will contain imaginary components:

X Im[(xn + jxﬂﬂgjexp[— j(n %)%D (10)

T-Comm Vol.l14. #11-2020

ELECTRONICS. RADIO ENGINEERING

Both vectors are added to one vector so that the real part lies

in the range
g {xo...xM

Z
2
ey |
2

In the third step, the fast Fourier transform (FFT) is
calculated, in which the first part of the output vector will
contain the real part, and the second part of the vector will
contain the imaginary part:

[y] eFFT{[xO...xM_I],%}

The fourth step is the calculation of the new coefficients and
rewrite them according to the rule:

X, =X exp(—jﬂ]
n "~ n M

n=12..M/4—1, with the skip of one coefficient and
M/4+1, .. M/2-1

}, and the imaginary part in the range

(11

(12)

X/ :\/E(l_j)xMM (13)
x2n <~ xn (14)
Xnrorcon € X2 (15)

n=0,1...M /2-1. After the product of all calculations and

permutations, the output real vector containing the coefficients of
the DCT-IV transformation will be obtained, which will be
multiplied with the transposed matrix C figure 3 [2].

Computational complexity of cosine modulated filter banks

The computational complexity of the DCT-IV algorithm
includes one M/2 complex fast Fourier transform, M/2
multiplications in the second step, as well as (M/2-2) complex

multiplications and one multiplication VZ (1 =) described in the
fourth step, resulting in the complexity of the DCT-IV algorithm:

y(M)=%10g2M+M (16)
a(M)=%log2M (17)

And the computational complexity of M-channel cosine
modulated filter banks when using a polyphase structure that
contains m multiplications and m-1 additions, as well as a
mapping matrix that includes M additions, is calculated as
follows:

,u(M):%(4m+log2M+2) (18)

a(M) :%(4;” +3log, M —2) (19)

m — filter overlay coefficient.

ELECTRONICS. RADIO ENGINEERING

Comparison of the number of arithmetic operations
performed by CIC-based DDC and CMFB-based filter Bank

The CIC-based DDC consists of cascades, each of which in
turn contains a third-order CIC LPF (three integrating and
differentiating links each), half-band FIR filters, and one
terminal LPF FIR (total filters without CIC LPF length N/",

i =0+ K).Each half-band filter reduces the sample rate by a
factor of 2.

The total number of arithmetic operations performed by the
CIC-based DDC during the sampling period is:

Ope = (Ad gy + Mul ;) 2M

dde

K \,vﬁr e K T fir
Qi 2114{2 | 2[6|Z N -liy N n
=0 -‘urm -2 i=0 -"um' +2 (21)

|: 6+ z N; - } — 1s the total number of additions in
ddc 2

(20)

CIC

cascade durmg the

— is the
ul , _2+22

C[C 2
multlphcatlons in one stage during the sampling period,

_LZF;Afcch — decimation coefficient of the CIC filter,
cic

one sampling

total

pe od,
number of

Af

— gnal band at the DDC output, Af,, . — CIC filter

f_ISM

bandwidth, F; — sampling frequency, |~ rounding operator to

the nearest smallest value.
The filter Bank accepts M samples of the signal at frequency
F, as input, and after the necessary processing, the output

contains samples of M-channels analysis. The number of
arithmetic operations performed during one sampling period is
equal to:

0, = Mult, + Add, (22)
Total number of multiplications per sampling period:
Mult, =(%log2M +M +2Mm +mjﬁ (23)
The total number of additions per sampling period:

1 (29

M 1
Add, =| —log, M +2M (m—-1)+ M |—+(2m—-1)—
The dependence of the number of arithmetic operations on
2M, M =2", r=1,..10 is shown in figure 6. Calculation was

performed at F/ =12 MHz. The following conclusions can be

drawn from these dependencies:

1) The number of computational operations increases with
the increase of 2M;

2) DDC based on the filter Bank requires a minimum of 6.4
times at 2M=4 and a maximum of 369.3 times at 2M=2048 fewer
arithmetic operations than DDC based on CIC.

DDC CIC
DDC filter bank

102 &

Number of computing operations

2 3 7 8 10 1M
I092(2M)

Fig. 4. Dependence of the number of arithmetic operations on 2M

Program implementation of cosine modulated filter banks

In this article, the cosine modulated filter Bank is
implemented on an arm processor rk3399pro with an integrated
GPU mali mp4 860-t, the algorithm itself is implemented using
the programming languages C/C++ and OpenCL, mathematical
operations of the FFT, DCT-IV algorithms and working with
matrices are performed on the GPU.

To implement the fast Fourier transform algorithm, it was
necessary to programmatically include the clfft and OpenCL
libraries, as well as install video card drivers. OpenCL is an open
standard for low-level programming, which is used by such IT
product manufacturers as AMD, ARM, NVidia, Intel, etc. [3]. It
allows you to use the processing power of the GPU. CIfft is an
additional library containing FFT functions [4].

Read prototype filter

v

Build OpenCL program object

'

Calculate work groups size

'

Build polyphase structure

A 4

Convet to gpu-ready format

'

Channel per thread
permutation

Make kernels >

'

Reading a test file

Fig. 5. OpenCL preparatory stage

The whole organization of the project can be divided into the
preparatory and processing phases.

T-Comm Tom 14. #11-2020

For the first one, you need to have records of the broadband
signal, the generated pulse characteristic of the prototype filter,
and to configure the environment in which the calculations will
be performed, you need to perform such manipulations as shown
in the block diagram figure 5.

The first block reads a file with a prototype filter that is
generated using the “MATLAB” algorithm. if the reading was
successful, the second block builds an OpenCL object: it creates
a context, device, and Program, which is passed the path to the
resource file with the function to run on the GPU. After
successful creation of all objects, it is necessary for the algorithm
to work effectively to determine the size of the working group 7,
which will correspond to the number of channels in the filter
bank, if 2M > Wmax, Wiax is the maximum size of the working

group, then W = an, otherwise W = 4, Wna=M2. 1p the
block for creating a polyphase structure, the polyphase
components are prepared and sorted, which is described by
formulas 2 and 3, and is also expressed as an algorithm in figure 6.

Start

Hy(2) = hy(2*M*j+k)]

jmod2 orm -1 mod 2

Hy(z) = Hy(2) * (-1)

|
—
Reverse(H,(z1), Hy(z2))

End

Fig. 6. Building a polyphase structure

Where k — polyphase number count, j-polyphase impulse
count, the reverse function - reverses the order of eclements in the
interval, starting with one element and ending with the second,
the coefficients of the polyphase structure are expressed by the
following formulas:

z=Q+M—-1—k)+m+]j,

(25)
z1=Q+«M—1—k)*m, (26)
22=02*M—1—k)+*m+m, 7)

T-Comm Vol.l14. #11-2020

ELECTRONICS. RADIO ENGINEERING

After these manipulations, a kernel “Channel per thread
permutation” is created ready to run on the GPU, which performs
a permutation of polyphase components as in matrices 4, 5, 6 for
the DCT-IV transformation. It is also necessary to transmit the
read test file with a broadband signal recording directly during
calculations. It is worth noting that the algorithm can be
configured to work in real time.

At the preparatory stage, it was necessary to configure the
cIFFT environment for fast Fourier transform on the GPU figure 7.

Setup clFFT

'

Precalc weigths for input and
ouput data

'

Create and build in FFT pre and
post processing

OpenCL microcode for FET for
preprocessing

OpenCL microcode for FET for
postprocessing

L Bake the plan.

Fig. 7. DCT-IV calculation

The first block initializes the cIFFT API, which allows the
library to create the resources needed to manage the plans that
will be created and destroyed. Also in this block, settings are
made such as: setting the accuracy of floating-point FFT data,
determining the expected location of input and output buffers,
and setting the number of discrete arrays that the plan can
process simultaneously. The clfft library supports FFT up to
three dimensions (1D, 2D, 3D). This article uses a one-
dimensional complex DFT:

1Y 2wk
I;= szexp(:l:z ™
scale pard n

)forj:(},l,...,n—l
(28)

In the second block, the weights for input and output data are
pre-calculated using formulas 7 and 8. the Third block configures
and creates pre — and post-processing functions that make it
possible to call the built-in OpenCL functions provided by the
user for subsequent processing of output data from the FFT core,
which significantly improves system performance [5]. “Bake the
plan” means compiling the FFT plan.

Individual threads and parts of the code are managed using
events, which organize a queue of executed commands (figure
8). To implement the algorithm in this article, you will need 4
events: wait for buffer shifting, wait for buffer reading from
GPU, wait for buffer write to GPU, and wait data writing for
kernel execution. The second block represents a loop in which all
operations will be performed in turn until the results are read
from the GPU buffer.

ELECTRONICS. RADIO ENGINEERING

Configure events for gpu
v
Main computation routing
v
Shift data to M samples

v
Wait till end of data shifting and
kernel execution

v

Execute the plan

v
Read results from GPU

Fig. 8. Main cycle for calculating the filter bank

Testing the implemented algorithm on an ARM processor

The resulting algorithm was tested on ARM RK3399pro [9],
which is a six-core processor of the big. LITTLE architecture
with 2x Cortex A72 cores up to 1.8 / 2.0 GHz, 4x Cortex A53
cores 1.4 GHz, and an Arm Mali-T860 MP4 GPU with OpenCL
1.2 and DX 11 support, and an NPU up to 3 TOPS [6], most of
the mathematical operations are performed on the GPU.
The algorithm (figure 5) selected the size of the working group
W = 16, and the number of counts per core equal to 8, which
with these parameters gave the maximum GPU load and the
minimum CPU load, which was 3-6 percent.

Prototype filter | M m | Filter FIR | Average Single channel

type length sample rate, | sample rate,
ksample/s ksample/s

ILS M16 mlé |16 16 | 512 15935 995.97

ILS M32 ml6 |32 16 | 1024 157546 492 33

ILS Mé4 ml6 | 64 16 | 2048 15126 4 236.35

ILS MI128 ml6 | 128 16 | 4096 150416 117.51

ILS M256 mlé6 | 256 16 | 8192 15800 61.7

Fig. 9. Results of testing on the mali-t8§60 GPU

[ey e T ey TS ATy
T T

ngn

FEREER

i £ 3 £ wF [0}]

Figure 9 shows the results of testing the implemented
algorithm on the mali-t860 GPU, M16-M256 is the number of
channels, m16 is the overlap coefficient, and the number of
processed blocks is 32768 per cycle, with a frequency of polling
the speed of operation once every 40 cycles. It is worth noting
the direct proportional dependence of the sample rate per channel
on the total number of channels, which indicates that there are no
performance leaks in the algorithm.

Figures 10 show such characteristics as transfer function,
overall transfer function and total aliasing transfer function for
32 real / 64 complex channels.

Conclusion

In this article, a theoretical description of CMFB was
demonstrated with a representation of the calculation formulas
and flowcharts of the algorithm. The evaluation of computational
costs performed by DDC based on CIC and CMFB based filter
Bank showed that DDC CMFB requires at least 6. 4 times at
2M=4 and a maximum of 369.3 times at 2M=2048 fewer
arithmetic operations than DDC based on CIC. When testing the
algorithm on an ARM processor with an integrated graphics
processor, it was found that the proposed algorithm uses the
GPU to the maximum and the minimum by 3-6 percent of the
CPU with a different number of channels, which will be
effectively combined with the algorithm described in the article
[8], in which the demodulator channels were filtered on the CPU.
A direct proportional dependence of the sample rate of one
channel on the total number of channels is revealed. Graphs of
filter banks for 32 real / 64 complex channels are constructed.

References

1. Ari Vi lainen, Juuso Alhava, and Markku Renfors, “Efficient
Implementation of Complex Modulated Filter Banks Using Cosine and
Sine Modulated Filter Banks”, Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing Volume (2006), Article
ID 58564, pp. 1-10.

2. Henri e S. Malvar (1992), “Signal Processing with Lapped
Transforms”, Artech House, INC. pp 67-75.

3. Aaftab Munshi Benedict R Gaster Timothy G. Mattson James
Fung Dan Ginsburg (2011), OpenCL Programming Guide Ist Edition,
Addison-Wesley Professional.

4. cIFFT, Library and APl documentation, available at:
https://github.com/cIMathLibraries/cIFFT (Accessed 10 October 2020)

5. Improve FFT post-processing performance using cIFFT Post-
callback (2016), available at https://developer.amd.com/improve-fft-
post-processing-performance-using-clfft-post-callback/, (Accessed 10
September 2020).

6. Fuzhou Rockchip Electronics Co., Ltd, “RK3399Pro Datasheet
Rev 1.17, pp 7-18.

7. A.L. Solonina, D.A. Ulahovich, S.M. Arbuzov, E.B. Solovyova
(2005), “Osnovi cifrovoy obrabotki signalov” Basics of digital signal
processing, 2 Edition, SPB, p 768, pp 589-620.

8. V.S. Priputin, S.Y. Sokolov, N.A. Kandaurov, (2020),
“Implementation of the Discrete Frequency Demodulator on Processor with
ARM Architecture”, 2020 Systems of Signal Synchronization, Generating
and Processing in Telecommunications (SYNCHROINFO), 19889625.

9. V.R. Magsumov, V.S. Priputin, D.S. Chirov, (2020), “Development
and Research of a HF Range Hybrid Filter Bank Based on ARM Processor”
2020 Systems of Signal Synchronization, Generating and Processing in
Telecommunications (SYNCHROINFO), 9166064.

T-Comm Tom 14. #11-2020

ELECTRONICS. RADIO ENGINEERING

PEAJINZALIMA KOCUHYCHO-MOAYJIMPOBAHHbIX LUNDPPOBbLIX ®UJIbTP BAHKOB
HA BA3E NMPOLIECCOPA C APXUTEKTYPOW ARM

Cokonoe Kupunn KOpbeBu4, Mockosckuti TexHuuyeckuti YHusepcumem Cesasu u Mupopmamuku (MTYCH), Mockea, Poccus,
sokolovkirilluy@gmail.com
Mpunytun Bnapumup Cepreesud, Mockosckuti TexHudeckut YHusepcumem Cessu u MHgpopmamuku (MTYCH), Mockea, Poccus,
v.s.priputin@mtuci.ru
Jlo6oBa Enusaeera OneroBHa, Mockosckut TexHuyeckuti YHusepcumem Cesasu u MHupopmamuku (MTYCH), Mockea, Poccus,
lizabeth2@mail.ru

AHHOTauuA

[NpeacTaBneH knacc MHOroKaHasbHbIX KOCUHYCHO-MOAYIMPOBaHHbIX 6aHkoB ¢unbTpoB (CMFB) aHanu3a, ocHoBaHHbIX Ha addekTe Moay-
NALUMK € BbICTPbIM AUCKPETHO-KOCUHYCHbIM NpeobpasoBaHueM Yeteéptoro Tuna (DCT-IV), pacyér koToporo NpousBoAnTCA € UCMONbL30-
BaHMeM bGbicTporo npeobpasosaHus Pypbe. B kauecTBe ¢unbTpa NpOTOTMMNA UCMONL30BANICA HU3KOYACTOTHBIN PUILTP C KOHEYHOM UM-
MyNbCHOW XapaKTEPUCTUKOM, CABUHYTbIE MO YacTOTE KOMUM KOTOPOTrO BbIMOJHEHbI C UCMONb30BaHUEM 3P DEKTUBHON TEXHONOTUN MONU-
¢asHoro npepcraBneHns 6aHka ¢unbTpoB. [prBeaeHo cpaBHeHWe Yncna apudMeTUHeckMX onepauui, BbinonHaeMbix digital down con-
verter (DDC) Ha 6ase cascade integral-comb (CIC) u Ha 6ase CMFB npu pasnuyHoM konuuectBe kaHanoB. [pefcTaBneHo nporpaMm-
Hoe onucaHue anroputMa CMFB B Buae 610K cxeM C on1caHneM BO3MOXXHOCTEN MporpaMMHbIX 6ubnnotek Opencl u clfft ana peanuza-
umu anroputma 6anka punstpos u Moaynaumu DCT-IV Ha rpaduyeckom npoueccope. [poBeaeHo TecTUpoBaHKWe NOMYYEHHOTO anNropuUT-
Ma Ha mpoueccope ceMeiictBa ARM u rpaduyeckoM npoueccope mali ¢ npuBefeHneM Tabnuupl ¢ sample rate npu pasHOM Ymucrie KaHa-
JIOB C MaKCMMaJlbHOI 3arpyskoit rpaduyeckoro npoueccopa (GPU) u MMHMManbHOI 3arpyskoit LeHTpanbHoro npoueccopa (CPU).

Kntioyeeble cnoea: kocuHycHo-mo0ynuposaHHsil cpunbmp 6aHK, duckpemHoe KocuHycHoe npeobpazosaHue 4 muna, epacbuyeckuti npoueccop,
OpenCL, ARM npoueccopsl, 8b14UCTUMENBbHAA CIIOKHOCMb

Jluteparypa

I. Ari Viholainen, Juuso Alhava, and Markku Renfors. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine
Modulated Filter Banks // Hindawi Publishing Corporation EURASIP Journal on Applied Signal Processing Volume (2006), Article 1D
58564. C. I-10.

2. Henrique S. Malvar. Signal Processing with Lapped Transforms. Artech House, INC. 1992. C. 67-75.

3. Adftab Munshi Benedict R. Gaster Timothy G. Mattson James Fung Dan Ginsburg. OpenCL Programming Guide Ist Edition, Addison-
Wesley Professional, 201 I.

4. cIFFT, Library and APl documentation, available at: https://github.com/cIMathLibraries/cIFFT (Accessed 10 October 2020).

5. Improve FFT post-processing performance using clFFT Post-callback (2016), available at https://developer.amd.com/improve-fft-post-
processing-performance-using-clfft-post-callback/, (Accessed 10 September 2020)

6. Fuzhou Rockchip Electronics Co., Ltd, "RK3399Pro Datasheet Rev |.1". C. 7-18

7. CononuHa A.N., Ynaxosuy [.A., Apbysoe C.M., Conosbesa E.b. OcHoBbl LmdpoBoit obpaboTku curtanos, M3a. 2-y ucnp. u nepeab. Crib.
BYB-Tetepbypr, 2005. C. 589-620. 768 c.

8. Priputin V.S., Sokolov S.Y., Kandaurov N.A. Implementation of the Discrete Frequency Demodulator on Processor with ARM
Architecture // 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 2020,
19889625.

9. Magsumov V.R., Priputin V.S., Chirov D.S. Development and Research of a HF Range Hybrid Filter Bank Based on ARM Processor //
2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 2020. 9166064.

UHdpopmauma o6 aBTopax:

Cokonoe Kupunn FOpbeeu4, Mockoseckuti TexHuyeckuti YHusepcumem Ceasu u MHgpopmamuku (MTYCH), uHxeHep nepeoti kamezopuu HINJ1-4807 HNY
MTYCH, Mockea, Poccus

Mpunymux Bnadumup Cepzeeeud, Mockosckuti TexHuuyeckuti YHusepcumem Cessu u MHgpopmamuku (MTYCH), k.m.H. 3as. nab HNJ1-4807 HNY
MTYCU, Mocksa, Poccus

Jlo6oea Enuzaeema Onezoena, Mockosckuii TexHuueckut YHueepcumem Cessu u Mugpopmamuku (MTYCH), m.H.c. HNJ1-4803 HNY MTYCH, Mockea,
Poccus

T-Comm Vol.l14. #11-2020

