
T-Comm Vol.14. #11-2020 57

IMPLEMENTATION OF COSINE MODULATED DIGITAL FILTER
BANK ON PROCESSOR WITH ARM ARCHITECTURE

Keywords: cosine modulated filter bank, discrete
cosine transform type 4, graphics processing unit,
OpenCL, ARM processors, computational complexity

Для цитирования:
Соколов К.Ю., Припутин В.С., Лобова Е.О. Реализация косинусно-модулированных цифровых фильтр банков на базе процессора с архитектурой ARM //
T-Comm: Телекоммуникации и транспорт. 2020. Том 14. №11. С. 57-63.

For citation:
Sokolov K.Yu., Priputin V.S., Lobova E.O. (2020) Implementation of Cosine Modulated Digital Filter Bank on Processor with ARM architecture. T-Comm,
vol. 14, no.11, pр. 57-63. (in Russian)

This paper presents a class of multichannel cosine-mod-
ulated filter banks (CMFB) of analysis based on the mod-
ulation effect with a fast discrete-cosine transformation
of the fourth type (DCT-IV), which is calculated using
the fast Fourier transform. As a prototype filter, a low-
frequency filter with a finite pulse characteristic was
used, frequency-shifted copies of which were made using
an effective technology for polyphase representation of
the filter Bank. The comparison of the number of arith-
metic operations performed by digital down converter
(DDC) based on cascade integral-comb (CIC) and CMFB
based on different number of channels is given. A soft-
ware description of the CMFB algorithm is presented in
the form of block diagrams describing the capabilities of
the Opencl and clfft software libraries for implementing
the DCT-IV filter Bank and modulation algorithm on a
GPU. The obtained algorithm was tested on an ARM
family processor and a mali GPU with a table with sam-
ple rate for different number of channels with the max-
imum load of the graphics processor (GPU) and the
minimum load of the Central processor (CPU).

Kirill Yu. Sokolov,
Moscow Technical University of Communications and Informatics
(MTUCI), Moscow, Russia, sokolovkirilluy@gmail.com

Vladimir S. Priputin,
Moscow Technical University of Communications and Informatics
(MTUCI), Moscow, Russia, v.s.priputin@mtuci.ru

Elizaveta O. Lobova,
Moscow Technical University of Communications and Informatics
(MTUCI), Moscow, Russia, lizabeth2@mail.ru

DOI: 10.36724/2072-8735-2020-14-11-57-63

Information about authors:
Kirill Yu. Sokolov, Moscow Technical University of Communications and Informatics (MTUCI), engineer of the f irst category NIL-4807 NICH MTUCI,
Moscow, Russia
Vladimir S. Priputin, Moscow Technical University of Communications and Informatics (MTUCI), Ph.D. head of laboratory NIL-4807 NICH MTUCI, Moscow,
Russia
Elizaveta O. Lobova, Moscow Technical University of Communications and Informatics (MTUCI), junior researcher NIL-4803 NICH MTUCI, Moscow, Russia

Manuscript received 14 September 2020;
Accepted 20 October 2020

ELECTRONICS. RADIO ENGINEERING

T-Comm Tом 14. #11-2020
58

ELECTRONICS. RADIO ENGINEERING

Introduction

One of the most effective tools for building broadband data
transmission systems is the digital filter bank, which is a set of
similar digital bandpass filters designed to divide the input signal
samples into several sub-bands (sub channels) that evenly cover
the entire frequency range under study.

Figure 1 shows a typical scheme for building M-channel filter
banks. At the first stage, the input samples of the signal fall into
the delay line, and the signal is split into sub-band components
using analysis filter banks. Since the received sub-band signals
have a limited frequency band, it is necessary to lower their
sampling rate, which is carried out using decimators, and the
decimation coefficient depends on the number of channels. At
the second stage, additional processing is performed in the sub-
band processing unit in order to clear the noise. At the third
stage, the signal is restored from the sub-band components using
the analysis filter banks, where the sampling rate is reversed by
interpolating the signal samples. Obviously, the use of
decimators and interpolators in sub-band processing creates the
problem of decimation noise at the analysis stage and
interpolation errors at the synthesis stage, but reduces the number
of mathematical operations.

Fig. 1. Basic block diagram of filter banks representation

Filter banks based on the modulation effect and the use of a
low-pass filter of the prototype are widely used, followed by
obtaining its frequency-shifted copies so that the set of filters
covers the entire operating frequency range.

Cosine modulated filter bank

Cosine-modulated filter banks do not always have full
recovery properties, but by optimizing the coefficients of the
prototype filter, you can achieve the required accuracy.
However, since only the analysis filter bank is considered in this
article, the expression for the impulse characteristics of filters
takes the following form:

1 1h n2 cos
2 2p

Mh n
MM

k n (1)

M – the number of channels, 0,1k M 1 is the
channel number, 0,1 2n m 1M , m is the overlap
coefficient, and h n is the coefficients of the prototype filter.

When comparing the modulation sequences and the basis
functions of the discrete cosine transformation of the fourth type
(DCT-IV), we can conclude that the necessary modulation

functions can be implemented using DCT-IV matrices,
which are symmetric in structure and satisfy the following rules:

, I is the identity matrix. Modeling has
confirmed the effectiveness of this method in constructing digital
filter banks with a large number of channels and high frequency
selectivity. The amplitude-frequency response of the prototype
filter and the resulting cosine-modulated filter bank is shown in
figure 2.

Fig. 2. Frequency response of the prototype filter
and the cosine-modulated filter Bank

Polyphase representation of filter banks

The implementation of cosine-modulated filter banks
proposed in this article is based on an effective scheme for the
polyphase representation of the prototype filter [1] shown in
figure 3.

Fig. 3. Block diagram of a cosine modulated filter bank

The algorithm of operation of this filter Bank implies the
passage of input samples of the signal through the delay line,
where the number of, the number of is equal to ,
followed by their decimation in M-decimators [7], the number
of which is equal to twice the number of channels in the
prototype filter (2M), and the decimation coefficient is equal to
the number of channels (M).

At the next stage, filtering is performed due to the polyphase
representation of the prototype filter, as a result of which the
impulse response of the original filter is decomposed as follows:

T-Comm Vol.14. #11-2020 59

ELECTRONICS. RADIO ENGINEERING

2
12

2
2

2
1

2
0

MG z

G z

G z

zG

, (2)

lG is expressed in the form 2M of polyphase
components using polyphase filters of type one, h np

 is the

prototype filter:

z pM M
2M m1 1 2 1

2 2

0 0 0

2
M

l
p p l

pl l
H h l pM z z Gl z

(3)

The third stage is the representation of a transposed matrix C
containing submatricesri f M2 * M dimension
M / 2 * M / 2 , the matrix J is a reverse matrix I:

M2 *

0
0

0
0 M

I
J

C
J
I

(4)

*
22

1 0
0 1 M M

I (5)

*
22

10
1 0 M M

J (6)

At the end, the calculated values fall into the DCT-IV
transformation block, which contains M inputs and outputs.

Fast DCT-IV using fast Fourier transform

At the first stage there is an input vector with real numbers of
length M: x n 0,1 M 1 which is re-formed as follows :

2nnx x (7)

n M /2x xM 1 2n (8)

 0,1,n M / 2 1, the sign indicates the transfer of
samples from one part of the vector to another.

At the second stage, need to get an M-element complex
vector, which will be divided into two vectors. The first vector
will contain real components:

2 4n n n Mx x jx exp j
M

1nRe (9)

And the second vector will contain imaginary components:

22

1
4n n Mx x jx exp jMn

Im n
M

 (10)

Both vectors are added to one vector so that the real part lies

in the range
0 1

2
Mx x , and the imaginary part in the range

1
2

x xM M
.

In the third step, the fast Fourier transform (FFT) is
calculated, in which the first part of the output vector will
contain the real part, and the second part of the vector will
contain the imaginary part:

M
0 1 0 1 ,

2MMx x FFT x x (11)

The fourth step is the calculation of the new coefficients and
rewrite them according to the rule:

expnnx x
M
nj (12)

1,2n M / 4 1, with the skip of one coefficient and
M / 4 1, ,M / 2 1

j/4 /42 1M Mxx (13)

n2nx x (14)

n /M 21 2M n xx (15)

0, 1n M / 2 1. After the product of all calculations and
permutations, the output real vector containing the coefficients of
the DCT-IV transformation will be obtained, which will be
multiplied with the transposed matrix C figure 3 [2].

Computational complexity of cosine modulated filter banks

The computational complexity of the DCT-IV algorithm
includes one M/2 complex fast Fourier transform, M/2
multiplications in the second step, as well as (M/2-2) complex
multiplications and one multiplication described in the
fourth step, resulting in the complexity of the DCT-IV algorithm:

M 2
M log
2

M M (16)

2log
2

M 3M M (17)

And the computational complexity of M-channel cosine
modulated filter banks when using a polyphase structure that
contains m multiplications and m-1 additions, as well as a
mapping matrix that includes M additions, is calculated as
follows:

2m4 log 2
2

M M M (18)

M2m4 3log 2M M (19)
2

m – filter overlay coefficient.

T-Comm Tом 14. #11-2020
60

ELECTRONICS. RADIO ENGINEERING

Comparison of the number of arithmetic operations
performed by CIC-based DDC and CMFB-based filter Bank

The CIC-based DDC consists of cascades, each of which in
turn contains a third-order CIC LPF (three integrating and
differentiating links each), half-band FIR filters, and one
terminal LPF FIR (total filters without CIC LPF length

iN fir ,
0i K).Each half-band filter reduces the sample rate by a

factor of 2.
The total number of arithmetic operations performed by the

CIC-based DDC during the sampling period is:

 (20)

 (21)

0

1
2

firK
i

ddc i
i CIC

NAd
M

2 6 – is the total number of additions in

one cascade during the samplingng pe od,

0
2 2

2

firK
i

i
CIC

NMulddc
i M

– is the total number of

multiplications in one stage during the sampling period,
2Fs CIC

CICM
f
f – decimation coefficient of the CIC filter,

1.5
sF
M

f –– gnal band at the DDC output, CICf – CIC filter

bandwidth, Fs – sampling frequency, – rounding operator to
the nearest smallest value.

The filter Bank accepts M samples of the signal at frequency
sF as input, and after the necessary processing, the output

contains samples of M-channels analysis. The number of
arithmetic operations performed during one sampling period is
equal to:

Bank b bQ Mult Add (22)

Total number of multiplications per sampling period:

2
1log

2b M
M M 2Mm mMult M (23)

The total number of additions per sampling period:

12
M log3 1 12
2 2bAdd M 2M (m m

M M
1) M (24)

The dependence of the number of arithmetic operations on
2M, M 2r , r 1,...10 is shown in figure 6. Calculation was
performed at 12sF MHz. The following conclusions can be
drawn from these dependencies:

1) The number of computational operations increases with
the increase of 2M;

2) DDC based on the filter Bank requires a minimum of 6.4
times at 2M=4 and a maximum of 369.3 times at 2M=2048 fewer
arithmetic operations than DDC based on CIC.

32222 77 8 10 11
101

102

103

104

105

DDC CIC
DDC filter bank

log2(2M)

Fig. 4. Dependence of the number of arithmetic operations on 2M

Program implementation of cosine modulated filter banks

In this article, the cosine modulated filter Bank is
implemented on an arm processor rk3399pro with an integrated
GPU mali mp4 860-t, the algorithm itself is implemented using
the programming languages C/C++ and OpenCL, mathematical
operations of the FFT, DCT-IV algorithms and working with
matrices are performed on the GPU.

To implement the fast Fourier transform algorithm, it was
necessary to programmatically include the clfft and OpenCL
libraries, as well as install video card drivers. OpenCL is an open
standard for low-level programming, which is used by such IT
product manufacturers as AMD, ARM, NVidia, Intel, etc. [3]. It
allows you to use the processing power of the GPU. Clfft is an
additional library containing FFT functions [4].

Read prototype filter

Build OpenCL program object

Calculate work groups size

Make kernels

Build polyphase structure

Reading a test file

Channel per thread
permutation

Convet to gpu-ready format

Fig. 5. OpenCL preparatory stage

The whole organization of the project can be divided into the
preparatory and processing phases.

T-Comm Vol.14. #11-2020 61

ELECTRONICS. RADIO ENGINEERING

For the first one, you need to have records of the broadband
signal, the generated pulse characteristic of the prototype filter,
and to configure the environment in which the calculations will
be performed, you need to perform such manipulations as shown
in the block diagram figure 5.

The first block reads a file with a prototype filter that is
generated using the “MATLAB” algorithm. if the reading was
successful, the second block builds an OpenCL object: it creates
a context, device, and Program, which is passed the path to the
resource file with the function to run on the GPU. After
successful creation of all objects, it is necessary for the algorithm
to work effectively to determine the size of the working group W,
which will correspond to the number of channels in the filter
bank, if 2M > , is the maximum size of the working

group, then , otherwise W = 4, . In the
block for creating a polyphase structure, the polyphase
components are prepared and sorted, which is described by
formulas 2 and 3, and is also expressed as an algorithm in figure 6.

hp(n)

Start

k < 2*M, k++

j < m, j++

Hp(z) = hp(2*M*j+k)

j mod 2 or m -1 mod 2

Hp(z) = Hp(z) * (-1)

Reverse(Hp(z1), Hp(z2))

End

Fig. 6. Building a polyphase structure

Where k – polyphase number count, j-polyphase impulse
count, the reverse function - reverses the order of elements in the
interval, starting with one element and ending with the second,
the coefficients of the polyphase structure are expressed by the
following formulas:

 (25)

 (26)

 (27)

After these manipulations, a kernel “Channel per thread
permutation” is created ready to run on the GPU, which performs
a permutation of polyphase components as in matrices 4, 5, 6 for
the DCT-IV transformation. It is also necessary to transmit the
read test file with a broadband signal recording directly during
calculations. It is worth noting that the algorithm can be
configured to work in real time.

At the preparatory stage, it was necessary to configure the
clFFT environment for fast Fourier transform on the GPU figure 7.

Setup clFFT

Precalc weigths for input and
ouput data

Create and build in FFT pre and
post processing

Bake the plan.

OpenCL microcode for FFT for
preprocessing

OpenCL microcode for FFT for
postprocessing

Fig. 7. DCT-IV calculation

The first block initializes the clFFT API, which allows the
library to create the resources needed to manage the plans that
will be created and destroyed. Also in this block, settings are
made such as: setting the accuracy of floating-point FFT data,
determining the expected location of input and output buffers,
and setting the number of discrete arrays that the plan can
process simultaneously. The clfft library supports FFT up to
three dimensions (1D, 2D, 3D). This article uses a one-
dimensional complex DFT:

 (28)

In the second block, the weights for input and output data are
pre-calculated using formulas 7 and 8. the Third block configures
and creates pre – and post-processing functions that make it
possible to call the built-in OpenCL functions provided by the
user for subsequent processing of output data from the FFT core,
which significantly improves system performance [5]. “Bake the
plan” means compiling the FFT plan.

Individual threads and parts of the code are managed using
events, which organize a queue of executed commands (figure
8). To implement the algorithm in this article, you will need 4
events: wait for buffer shifting, wait for buffer reading from
GPU, wait for buffer write to GPU, and wait data writing for
kernel execution. The second block represents a loop in which all
operations will be performed in turn until the results are read
from the GPU buffer.

T-Comm Tом 14. #11-2020
62

ELECTRONICS. RADIO ENGINEERING

Configure events for gpu

Main computation routing

Shift data to M samples

Wait till end of data shifting and
kernel execution

Execute the plan

Read results from GPU

Fig. 8. Main cycle for calculating the filter bank

Testing the implemented algorithm on an ARM processor

The resulting algorithm was tested on ARM RK3399pro [9],
which is a six-core processor of the big. LITTLE architecture
with 2x Cortex A72 cores up to 1.8 / 2.0 GHz, 4x Cortex A53
cores 1.4 GHz, and an Arm Mali-T860 MP4 GPU with OpenCL
1.2 and DX 11 support, and an NPU up to 3 TOPS [6], most of
the mathematical operations are performed on the GPU.
The algorithm (figure 5) selected the size of the working group
W = 16, and the number of counts per core equal to 8, which
with these parameters gave the maximum GPU load and the
minimum CPU load, which was 3-6 percent.

Fig. 9. Results of testing on the mali-t860 GPU

Fig. 10. Filter Bank for 32 real / 64 complex channels

Figure 9 shows the results of testing the implemented
algorithm on the mali-t860 GPU, M16-M256 is the number of
channels, m16 is the overlap coefficient, and the number of
processed blocks is 32768 per cycle, with a frequency of polling
the speed of operation once every 40 cycles. It is worth noting
the direct proportional dependence of the sample rate per channel
on the total number of channels, which indicates that there are no
performance leaks in the algorithm.

Figures 10 show such characteristics as transfer function,
overall transfer function and total aliasing transfer function for
32 real / 64 complex channels.

Conclusion

In this article, a theoretical description of CMFB was
demonstrated with a representation of the calculation formulas
and flowcharts of the algorithm. The evaluation of computational
costs performed by DDC based on CIC and CMFB based filter
Bank showed that DDC CMFB requires at least 6. 4 times at
2M=4 and a maximum of 369.3 times at 2M=2048 fewer
arithmetic operations than DDC based on CIC. When testing the
algorithm on an ARM processor with an integrated graphics
processor, it was found that the proposed algorithm uses the
GPU to the maximum and the minimum by 3-6 percent of the
CPU with a different number of channels, which will be
effectively combined with the algorithm described in the article
[8], in which the demodulator channels were filtered on the CPU.
A direct proportional dependence of the sample rate of one
channel on the total number of channels is revealed. Graphs of
filter banks for 32 real / 64 complex channels are constructed.

References

1.. Ari Vi lainen, Juuso Alhava, and Markku Renfors, “Efficient
Implementation of Complex Modulated Filter Banks Using Cosine and
Sine Modulated Filter Banks”, Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing Volume (2006), Article
ID 58564, pp. 1-10.

2.. Henri e S. Malvar (1992), “Signal Processing with Lapped
Transforms”, Artech House, INC. pp 67-75.

3.. Aaftab Munshi Benedict R Gaster Timothy G. Mattson James
Fung Dan Ginsburg (2011), OpenCL Programming Guide 1st Edition,
Addison-Wesley Professional.

4. clFFT, Library and API documentation, available at:
https://github.com/clMathLibraries/clFFT (Accessed 10 October 2020)

5. Improve FFT post-processing performance using clFFT Post-
callback (2016), available at https://developer.amd.com/improve-fft-
post-processing-performance-using-clfft-post-callback/, (Accessed 10
September 2020).

6. Fuzhou Rockchip Electronics Co., Ltd, “RK3399Pro Datasheet
Rev 1.1”, pp 7-18.

7. A.I. Solonina, D.A. Ulahovich, S.M. Arbuzov, E.B. Solovyova
(2005), “Osnovi cifrovoy obrabotki signalov” Basics of digital signal
processing, 2 Edition, SPB, p 768, pp 589-620.

8. V.S. Priputin S, .Y. Sokolov N, .A. Kandaurov, (2020),
“Implementation of the Discrete Frequency Demodulator on Processor with
ARM Architecture”, 2020 Systems of Signal Synchronization, Generating
and Processing in Telecommunications (SYNCHROINFO), 19889625.

9. V.R. Magsumov, V.S. Priputin, D.S. Chirov, (2020), “Development
and Research of a HF Range Hybrid Filter Bank Based on ARM Processor”
2020 Systems of Signal Synchronization, Generating and Processing in
Telecommunications (SYNCHROINFO), 9166064.

T-Comm Vol.14. #11-2020 63

РЕАЛИЗАЦИЯ КОСИНУСНО-МОДУЛИРОВАННЫХ ЦИФРОВЫХ ФИЛЬТР БАНКОВ
НА БАЗЕ ПРОЦЕССОРА С АРХИТЕКТУРОЙ ARM

Соколов Кирилл Юрьевич, Московский Технический Университет Связи и Информатики (МТУСИ), Москва, Россия,
sokolovkirilluy@gmail.com

Припутин Владимир Сергеевич, Московский Технический Университет Связи и Информатики (МТУСИ), Москва, Россия,
v.s.priputin@mtuci.ru

Лобова Елизавета Олеговна, Московский Технический Университет Связи и Информатики (МТУСИ), Москва, Россия,
lizabeth2@mail.ru

Аннотация

Представлен класс многоканальных косинусно-модулированных банков фильтров (CMFB) анализа, основанных на эффекте моду-
ляции c быстрым дискретно-косинусным преобразованием четвёртого типа (DCT-IV), расчёт которого производится с использо-
ванием быстрого преобразования Фурье. В качестве фильтра прототипа использовался низкочастотный фильтр с конечной им-
пульсной характеристикой, сдвинутые по частоте копии которого выполнены с использованием эффективной технологии поли-
фазного представления банка фильтров. Приведено сравнение числа арифметических операций, выполняемых digital down con-
verter (DDC) на базе cascade integral-comb (CIC) и на базе CMFB при различном количестве каналов. Представлено программ-
ное описание алгоритма CMFB в виде блок схем с описанием возможностей программных библиотек Opencl и clfft для реализа-
ции алгоритма банка фильтров и модуляции DCT-IV на графическом процессоре. Проведено тестирование полученного алгорит-
ма на процессоре семейства ARM и графическом процессоре mali с приведением таблицы с sample rate при разном числе кана-
лов с максимальной загрузкой графического процессора (GPU) и минимальной загрузкой центрального процессора (CPU).

Ключевые слова: косинусно-модулированный фильтр банк, дискретное косинусное преобразование 4 типа, графический процессор,
OpenCL, ARM процессоры, вычислительная сложность

Литература

1. Ari Viholainen, Juuso Alhava, and Markku Renfors. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine
Modulated Filter Banks // Hindawi Publishing Corporation EURASIP Journal on Applied Signal Processing Volume (2006), Article ID
58564. C. 1-10.
2. Henrique S. Malvar. Signal Processing with Lapped Transforms. Artech House, INC. 1992. C. 67-75.
3. Aaftab Munshi Benedict R. Gaster Timothy G. Mattson James Fung Dan Ginsburg. OpenCL Programming Guide 1st Edition, Addison-
Wesley Professional, 2011.
4. clFFT, Library and API documentation, available at: https://github.com/clMathLibraries/clFFT (Accessed 10 October 2020).
5. Improve FFT post-processing performance using clFFT Post-callback (2016), available at https://developer.amd.com/improve-fft-post-
processing-performance-using-clfft-post-callback/, (Accessed 10 September 2020)
6. Fuzhou Rockchip Electronics Co., Ltd, "RK3399Pro Datasheet Rev 1.1". C. 7-18
7. Солонина А.И., Улахович Д.А., Арбузов С.М., Соловьева Е.Б. Основы цифровой обработки сигналов, Изд. 2-у испр. и переаб. СПБ.
БЧВ-Петербург, 2005. C. 589-620. 768 c.
8. Priputin V.S., Sokolov S.Y., Kandaurov N.A. Implementation of the Discrete Frequency Demodulator on Processor with ARM
Architecture // 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 2020,
19889625.
9. Magsumov V.R., Priputin V.S., Chirov D.S. Development and Research of a HF Range Hybrid Filter Bank Based on ARM Processor //
2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 2020. 9166064.

Информация об авторах:
Соколов Кирилл Юрьевич, Московский Технический Университет Связи и Информатики (МТУСИ), инженер первой категории НИЛ-4807 НИЧ
МТУСИ, Москва, Россия
Припутин Владимир Сергеевич, Московский Технический Университет Связи и Информатики (МТУСИ), к.т.н. зав. лаб НИЛ-4807 НИЧ
МТУСИ, Москва, Россия
Лобова Елизавета Олеговна, Московский Технический Университет Связи и Информатики (МТУСИ), м.н.с. НИЛ-4803 НИЧ МТУСИ, Москва,
Россия

ELECTRONICS. RADIO ENGINEERING

