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The article considers an approach based on the random cubature method for
solving both single and multidimensional singular integral equations, Volterra
and Fredholm equations of the Ist kind, for ill-posed problems in the theory
of integral equations, etc. A variant of the quasi-Monte Carlo method is stud-
ied. The integral in an integral equation is approximated using the tradition-
al Monte Carlo method for calculating integrals. Multidimensional interpola-
tion is applied on an arbitrary set of points. Examples of applying the method
to a one-dimensional integral equation with a smooth kernel using both ran-
dom and low-dispersed pseudo-random nodes are considered. A multidimen-
sional linear integral equation with a polynomial kernel and a multidimen-
sional nonlinear problem - the Hammerstein integral equation - are solved
using the Newton method. The existence of several solutions is shown.
Multidimensional integral equations of the first kind and their solution using
regularization are considered. The Monte Carlo and quasi-Monte Carlo
methods have not been used to solve such problems in the studied literature.
The Lavrentiev regularization method was used, as well as random and pseu-
do-random nodes obtained using the Halton sequence. The problem of
eigenvalues is solved. It is established that one of the best methods consid-
ered is the Leverrier-Faddeev method. The results of solving the problem for
a different number of quadrature nodes are presented in the table. An
approach based on parametric regularization of the core, an interpolation-
projection method, and averaged adaptive densities are studied. The consid-
ered methods can be successfully applied in solving spatial boundary value
problems for areas of complex shape. These approaches allow us to expand
the range of problems in the theory of integral equations solved by Monte
Carlo and quasi-Monte Carlo methods, since there are no restrictions on the
value of the norm of the integral operator. A series of examples demonstrat-
ing the effectiveness of the method under study is considered.
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1. Method description

Consider the Fredholm integral equation (IE),
,uu(x)—/ifK(x,y)u(y)dy:f(x),XeV' (1)
\

where u(x) is the desired function, the points of the domain from
the V. m —dimensional Euclidean space, and z, A —some real

or complex numbers, K (x, y) —the kernel of the integral opera-
tor, the f (x)—free term.

Suppose that we know the random n points of the domain
Viy =(Yen V) Y =(Yf,..., Y1) . obtained from a dis-
tribution with densit p(y).yeV .

The normalization condition: j'p(y)dy —1- The integral in

Vv
(1) can be approximated by the traditional scheme for calculating
integrals by the Monte Carlo method [1]:

IK(x,y)u(y)dy z%gsj(x), xeV:

where g (x) = K(x, yj)u(yj).

: p(y”)
Let us rewrite (1) in the equivalent form:
,uu(x)—%ZSi(x)—/iRn(x)z f(x), xev: @
i=1

where R, (x) — is the residual term of the Monte Carlo integra-
tion formula:

IK(X, y)u(y)dy 2%281 (X)+ R, (x).
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We use points y'=(yl,..,y-) oy =(y],., YD) . aS
nodes of collocations in the well-known computational method,
which gives from (2) the corresponding SLAE for approximate
solutions of the points in question:
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Since the residual term of the quadrature sum of Monte Carlo
method with any given probability tends to zero as the number of
knots tends to infinity, it is reasonable to assume that under a
sufficiently smooth kernel and bounded operator inverse to the
operator of integral equation (1), the SLAE solution (3) converg-
es to exact in one of probability measures. In the literature the
corresponding convergence issues are dealt with for Neumann
series summation problem [1] and for so called semi-statistical
method [2,4,5].

2. Examples of applications of the method

2.1. A one-dimensional IE with a smooth kernel

Input data for the model problem: f(x)zl

K(x,y)=sin(x)—sin(y); the integration interval [0, z]. The
2

exact solution is —(7si /P _3ia=1,
u(x)=(zsin(x)-1) [2

4 =1. The solution is found using Monte Carlo methods for the

usual uniformly distributed pseudo-random grid and the corre-
sponding modified low-dispersion sequence, quasi Monte Carlo
(the nodes of the grid are points olow-dispersion Halton H (i)

sequence, j=1,...,n; S—prime number), and the quadrature

central rectangular method.
The results are shown in Figers 1 and 2, where the solid line
corresponds to the exact solution.
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Figure 1. Solution of IE (1) by Monte Carlo method. Left: n=10, pseudorandom nodes; right: n=10, modified pseudorandom sequence
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Figure 2. Numerical solution of IE (1). Left: n=10, Halton H;(2) sequence; right: n = 10, the central rectangles formula

2.2. Multivariate linear 1E with polynomial kernel

Initial data f the model roblem:

2
K(X,Y) =X X Yo Yo T (X) =X Xy + 9 (XX ) s
g =10; The area of integration is an m-dimensional cube
D™ ={0< Xp\eeus Xy Yire s Yy <1}
Exact solution u(x)=CyX,... Xy + 9% ... Xy (X... Xy +C,);
¢, =0.5, c1:(3/4)m, A=-3", u=1. Results of three con-

secutive calculations of the solution for the size of the area and
m = 10 the number of nodes n = 10: exact solution (0.02375,
0.01527, 0.00363, 0.04009, 0.04210, 0.08175, 0.00694, 0.03348,
0.03155, 0.01348); approximate solution (0.02679, 0.01758,
0.00448, 0.04425, 0.04638, 0.08800, 0.00831, 0.03722, 0.03516,
0.01561).

The solution error of the normal solution is about 11% |1'

On the next two calculations of the solution the error is much
smaller: about 1% and 0.4%.

2.3. Multivariate nonlinear problem - Gammerstein 1E
Consider a non-linear Fredholm IE of the form:
yu(x)—/lj K(x y)b(u(y),y)dy=f(x), xev, ©
\
the corresponding quadrature formula:

o, =2 KO D iy gy = ugy),

= p(y')
i=1...n (5)
As a test problem, consider a FE:
yu(x)—/le(x,y)uz(y)dyz f(x), xeD", (6)
\
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K(XY) =X X Yieee Yo £ (X) =X X

There are two exact solutions u(x):c(k)xl...X'

C(Lz) _ 1i \jl— 14—m+1
2:4"4

solution results for the following initial data: m =10, r =100;

A=-r3", r=1...100, u=1, the initial approximation

ui(o) =f (yi), i=1,...,n is. The set of coordinates of nodes in

u(x) = c®x, ...x,,; Monte Carlo

the random grid was simulated for density of distribution:
p(x) =4m(X1---Xm )3, x e D™, so the coordinate values were
found using the appropriate formula of the inverse function
method: y| = (y,)"*, y, —random number for the correspond-

ing node and its coordinates. The coordinate values are shown in
Table 1. The results of Newton iterations are given in Tables 2
and 3.

Table 1
Coordinates of pseudo-random grid nodes
Node Node coordinates
number
1 092 08 073 0 078 094 .80 0.63
2 089 08 072 0 065 071 81 0.86
3 073 07 064 O 0.83 0.75 91 0.73
4 095 09 098 0 053 090 75 091
5 100 08 084 0 099 0.95 99 0.78
6 067 06 087 0 045 0.80 88 0.75
7 059 08 060 0 085 097 28 047
8 048 08 093 0 074 094 79 093
9 072 09 07 0 0.98 0.88 .81 0.69
10 073 08 033 0 0.95 0.87 83 0.71
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The coordinate values were found using the formula of the
inverse function method: ;| = (y!)"¢, the y, —random number

for the corresponding node and its coordinates in the Monte
Carlo method or the Halton sequence number H, (2) in the qua-

si-Monte Carlo method. The results of calculations at n = 100
10 trials for each method are given in Tables 4 and 5. The pa-
rameter "degree c" is a characteristic of the distribution density
of the integration nodes.
Table 4
Results for the pseudo random sequence

Table 2
Results for the first iteration

Node Errors Approximate A precise
number of iterations solution solution
1 -0.0403 0.04755 0.03006

2 -0.0305 0.03600 0.02276

3 -0.0322 0.03796 0.02400
4 -0.0610 0.07193 0.04547

5 -0.0673 0.07928 0.05012

6 -0.0131 0.01543 0.00975

7 -0.0040 0.00481 0.00304

8 -0.0654 0.07712 0.04875

9 -0.0377 0.04443 0.02809
10 -0.016 0.01919 0.01213

After the first iteration, the solution error was 58% for the -
non-arithmetic means. After the fourth iteration, the error was
less than 0.01%.

Degree, Simplified solution Numerical solution
C Average — Standard Average Standard
sinfulness, % errors, % sinfulness, % errors, %

1 13 3 125 47

2 11 10 52 33

3 9 1 6 3

4 9 1 3 3

5 9 0.4 6 4

Table 5
Results for the Halton sequence

Degree, Simplified solution Numerical solution
C Average — Standard Average — Standard
sinfulness, % errors, % sinfulness, % errors, %

1 12 3 166 64

2 10 5 26 16

3 9 2 9 6

4 9 1 3 2

5 9 1 6 4

Table 3
Results for the fourth iteration

Node Errors of itera- | Approximate solu- A precise
number tions tion solution
1 -0.0000 0.03006 0.03006

2 -0.0000 0.02276 0.02276

3 -0.0000 0.02400 0.02400

4 -0.0001 0.04547 0.04547

5 -0.0001 0.05012 0.05012

6 -0.0000 0.00975 0.00975

7 -0.0000 0.00304 0.00304

8 -0.0001 0.04875 0.04875

9 -0.0000 0.02809 0.02809
10 -0.000 0.01213 0.01213

An appropriate choice of initial approximation (e.g,
ui(o) =-50f(y;), i=1...,n) makes it possible to find a se-

cond solution of the given IE. The results of the calculations are
similar to those considered above and therefore are not given.

2.4. Multidimensional FEs of the first kind and their solu-
tion using regularisation

Monte Carlo and quasi-Monte Carlo methods for solving
similar problems have not been described in the reviewed litera-
ture.  Initial data of the model problem: —

D™ ={0< X eres Xy Yoo Yoo <1}, M=10, K(X,Y) =X X Vi Yo
The problem under consideration belongs to incorrect prob-
lem, which is typical for first order Fredholm linear equation.
The nonlinear term plays the role of a perturbation. For solving
this problem, we used the well-known method of Lavrenteev
regularization; in accordance with this method, we converted the
IE to a second kind of IE with a small coefficient of the solution
function p = 0.01; the exact solution of the IE takes the form
U(X)=CoXy.. Xm+G(Xy...Xm) ¥ its simplified solution:
Uo(X)=CoXy... Xm; Co=(1+Ag-4™/p)/(u-1-3™ ), A=(-3)™ The set of
coordinates of the random grid nodes was modeled for the densi-

ty of the distribution: p(x):cm(xl...xm)c_l,ngm.

The data in Tables 4 and 5 shows that the accuracy of both
methods is approximately the same. The node density was cho-
sen according to the type of simplified solution obtained if the
parameter g is zero. The degree is ¢ = 4optimal, which is ex-
plained by the fact that the integrating cubic terms make the
main contribution to the integrate function.

2.5. The eigenvalue problem

One of the advantages of this method is the ability to numeri-
cally solve the complete eigenvalue problem for a multidimen-
sional integral operator. The approximate eigenvalues and
eigenfunctions are found by solving the complete eigenvalue
problem for the corresponding matrix of quadrature formula (3).
According to the known theory, the limit set oeigenvalues of
matrices approximating an integral operator includes the set of
eigenvalues of that integral operator.

There are many methods for solving the complete eigenvalue
problem for matrices: the Jacobi (rotation), Krylov, Leverier-
Faddeev, Danilevsky and some other methods. As a result of the
study it was found that one of the best of the considered methods
is the Leverier-Faddeev method: the Jacobi method assumes a
symmetric matrix, the Krylov method is economical, but its area
of applicability is limited (for the considered problems we could
not find a solution by this method), the Danilevsky method is
relatively complicated.

The results of solving the problem for various numbers of
quadrature nodes are presented in the table. They show that in
spite of low approximation accuracy of the function - solution of
FE, the approximation accuracy of the eigenvalues is satisfactory
even for small n.
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As a model problem (1) is considered for
f(X)=x+5 0<x<l 2=15 u=1 K(xy)=sin(5x+5y).
The kernel of the IE is degenerate, and the exact solution is
u(x) =C, cos(5x) +C,sin(5x)+C,(x), where C,,C, —are
some constants, C,(x)— one of zeros of the integral operator
(corresponding to the eigenvalue z; =1). The IE is reduced to a
SLAE with respect to the constants C,,C, with matrix:

15 sin(10
a, :1_2_0(1— COS(lO))'aiz = _1'5(0'5_#)

sin(10 15
a21=1.5(0.5+ 2(0 )j,a22=1—2—0(1—cos(10))-

The coefficients of the characteristic polynomial of this ma-
tix are  det(A-zE)=z"-pz-p, p,=172414,
p, =—0.18233; eigenvalues (zeros of the polynomial) are
2,=1.61096, z, =0.11318; Results obtained by three methods

are shown in Table 6 (method 1 — rectangular method, method 2
— onte Carlo method, method 3 — quasi Monte Carlo method).

Table 6
Results of eigenvalue calculations
N Method 1 Method 2 Method 3
Z Z Z Z Z; Z

5 | 1.58452 | 0.08765 | 1.75172 | 0.25856 | 1.50610 | 0.04589
10 | 1.60494 | 0.10736 | 1.51632 | 0.04268 | 1.63468 | 0.13484
15 | 1.60833 | 0.11063 | 1.78386 | 0.28386 | 1.59268 | 0.09551
20 | 1.60950 | 0.11176 | 1.55148 | 0.07998 | 1.56529 | 0.10672

The best results are obtained with the rectangular method,
with a slightly worse accuracy with the quasi Monte Carlo meth-
od. The results of the Monte Carlo method are less reliable. This
example reveals an interesting property: the convergence for
eigenvalues is much better (hundreds of times better) than for the
IE solution function.

2.6. Singular IE
2.6.1. Method for highlighting a feature
Consider a Fredholm IE (1) with a singular kernel K(x,y),

unbounded at x =y. For the solution we apply the method of sin-
gular point extraction:

mi(Y')=A[K(y'y)u(y)dy=2 [ K(y'y)u(y)dy=f(y')
Vi v\,

()
i=1...,n. The kernel of the of the integral in (7) is unbounded.
The dimensions of the domain are V, relatively small of the or-
der of O(n‘l’m), at n — oo, the variation u(y) in this domain

tends to zero, and the integral can be calculated approximately
by the formula:

T-Comm Vol.I5. #10-2021
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[K(y.y)u(y)dy=[K(y"y)dyu(y')=Ju(y') ¥' €V

Vi

<

The point y, it is feasible to find the point in the centre ofV,

the region. The kernel of the second integral in (7) is regular, so
that the integral can be calculated by the Monte Carlo method:

[ K(y'y)u(y)dy~ ! Y sy

%Y N=" o,

where ¢ (i ZK(yi’yj)
5(v') p(y') u
the sample, ylz(ylly_”,yrln), y“:(yl”,”_,yrfr‘]) belonging to

the closed region \7| the density p(y) is normalized to one in

(yj ) n, —number of points from

the region V \V,. As a result, we obtain from (7) an appropriate

SLAE for finding approximate values of solution in y ~ u(yi)

nodes of random grid:
K(y'y')
p(y’)

Singular IE with Cauchy kernel

=3 u=f, i=1...n ©®

p=Ad; ) =
( ) n—" v

1

wi(x)-2f(x-y) u(y)dy=x xe(02):  ©

0

dx— v, 21 nhoS
Vi={xe(01):[x—y|<kh/2}, i=L...m h=,

¢,k — some positive constants, 4 =0.2 ;=1. To solve (9), we

considered: A) Monte Carlo method. Random uniformly distrib-
uted on the interval (0,1) nodes (also modified distribution with
screening of excessively close points). B) The quasi-Monte Carlo
method. The nodes of the grid are points of low-dispersion Hal-
ton Hs(i), i=1...,n consistency; S— a prime number.

C) Central rectangular and trapezoidal methods.

Figure 3 shows plots of the numerical solution of IE (9) for
pseudo-random distribution of integration points. If pseudo-
random points are too close together, the accuracy tends to de-
crease and the number of conditioning of the SLAE matrix in-
creases. To make the distribution more uniform, the sequence of
points has been modified by eliminating excessively close points.

Figure 4 shows graphs of numerical solution of IE (9) by
quasi-Monte Carlo method. The points of the Halton sequences
[1] were chosen as the grid nodes. The calculation results show
that increasing the size of the partitioning element containing the
kernel feature in some limits leads to improvement of the solu-
tion. However, a further increase in the size of the considered
element leads to a decrease in accuracy due to the error of ap-
proximation of the solution in this element.
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u(x) ufx)

25 T 25

15 1.5
1 1
0.5 0.5
x 0 x
Figure 3. Approximate solution of IE (9). The solid line is the central rectangle method (n = 100),
the circles are the Monte Carlo method for 100 pseudo-sluice points (left k = 1; right k = 5)
ufx) ufx)
25 - 25 —+
2 2 1
15 15
1 1
0.5 0.5
x %

Figure 4. Approximate solution of I1E (9). The solid line is the central rectangle method (n = 100),
the circles are the quasi-Monte Carlo method for 100 points of the Halton sequence (left k = 1; right k = 5)

u(x) u(x)
15 T 15 4
1.2 T 12 4
0.9 T 0.9 T
0.6 T 0.6 T
0.3 T / 0.3 T
o] 0.2 ; 0.6 0.8 1.0 X o] ) . [;4 X

Figure 5. Approximate solution of IE (9). The solid line is the central rectangle (n = 10) method,
the circles are the Monte Carlo method for 10 pseudo-random points (left ¢ =+/0.1, right £ =0.1)
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Figure 6. Approximate solution of IE (9) at € = 0.1. The solid line is the central rectangle method (n=100),
the circles are the Monte Carlo method for 100 pseudo-random points (the sequence of points is modified on the right)
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Figure 7. Solution of IE (9) at n=100. The solid line is the central rectangle method (with 2-point smoothing),
the circles are the quasi-Monte Carlo method for the Halton sequence (left with smoothing)

2.6.2. Method based on parametric kernel regularisation

In equation (9) the singular kernel is replaced
K (x, y) = (x — y)’l by an asymptotically close regular expres-

sion K(X1y):(x—y)/|:(x-y)2+gz:|€—>0. Consider the

results of the numerical solution of (9) for 4 =1, 2 =1, shown in

Figurs. 5, 6.

Regularising the kernel and modifying the pseudo-random
uniform sequence by eliminating excessively close points leads
to a significant improvement in the result. The disadvantage of
the method is its strong dependence on the values of a small pa-
rameter €.

2.6.3. Interpolation-projection method
In this method, the approximate solution is found as a sum of

T-Comm Vol.I5. #10-2021

(10)

n
u(x)=3Cip(x-y;):

j=1
where ¢(x) —the basis function, for example, is a widely used
finite piecewise linear function C, —,¢(x)=max(0,1—2|x|/h),
h ~ 1, the unknown coefficients. Taking into account (10) from

n
(1) follows from

n n 1
Y Copux=y;) = 2y C, [K(x Y)auy - y;)ly + F(x), 0<x<L
= i 0
11)
Using (11) we find an SLAE for the solution of the unknown
coefficients of expression (10) by interpolation method
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ﬂic,-co(yi —y,»)=ﬂiCjTK(yi,y)¢(y—y,-)dy+ f(y;).

i=1...,n (12)

The constructed method can still be insufficiently accurate
for the solution of IE with singular kernel even at a large number
of integration nodes (see Fig. 7, right).

The refinement can be achieved by different methods, for ex-
ample, based on relation (11) using Galerkin method. However, a
more economic approach is to apply smoothing, for example,
according to scheme

1 3 in,
man(y' +I—,Ul,...,unj'

j=1

(u) = (13)

The relevant effect is illustrated in figure 7 at [ = 10.

Conclusion

This paper investigates a statistical method for solving high-
dimensional Fredholm integral equations with both smooth and
singulakernels. The approaches under consideration extend the
problems of the theory of integral equations solvable by Monte
Carlo and quasi Monte Carlo methods because there are no re-
strictions on the value of the norm of the integral operator.
A series of examples demonstrating efficiency of the method
under study are considered.

I express my gratitude to Professor S.A. Nekrasov for his
help in preparing this paper.
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NPUBJINXEHHOE PELLEHUE MHOTOMEPHbIX MHTEMPAJIbHbIX YPABHEHUN
METOAAMU MOHTE KAPJ1IO U KBA3U-MOHTE KAPJ10

Ab6ac Bucam Maxdu Abac, HOxHo-Poccutickuli 2ocydapcmeeHHbili nonumexHu4yeckuil yHueepcumem (Hogo4epkacckuil nonumexHu4eckud
uHcmumym), Hoeouepkacck, Poccus, abas.wisam.82@mail.ru

AHHOTaUMUA

B ctatbe paccmatpuBaeTca noaxos Ha OCHOBE METOAR ClyYaiHbIX KybaTyp AnA pelleHns Kak OHO, Tak M MHOTOMEPHbIX CUHFYNAPHBIX UHTErpasnbHbIX ypaB-
HeHuit, ypagHeHuit Bonbteppa n ®pearonbMa | poaa, AnA HEKOPPEKTHbIX 334a4 TEOPUM WMHTErpanbHbIX ypaBHEHWN U T.A. MaydeH BapuaHT keasu-Monte
Kapno AnA paccMaTpuBaeMoro Metoza. l/lHTerpan B UHTErpajibHOM yYpaBHeHUU I'IPVIGJ'IVI)KeHHO Bbl4UCIAE€TCA Npy NoMoLLmn TPB.JJMLWIOHHOVI CXeMbl BblHUCNe-
HusA uHTerpanoe Metogom Monte-Kaprno. [NpuMeHseTcs MHOroMepHas MHTEpPMONALMA Ha MPOU3BONIbLHOM MHOXECTBE TOo4eK. PaccMoTpeHb! mpuMepsb! npuMe-
HEHUA MeToAa K OAHOMEPHOMY MHTErpanbHOMY YPaBHEHWIO C FMaZKUM AAPOM C MCMONb3OBAHMEM KaK Cry4aliHbIX, Tak U HU3KOAUCMEPCHbIX NCEBAOCTy ai-
HbIX Y3NnOB. PewweHo ¢ MOMOLLbIO MeTOoJa HbtoToHa MHOromepHoe JNIMHENHoe UHTerpasibHoe ypaBHeHue C NoJiIntHOMWasibHbIM AAPOM, MHOFOMepHasa HeJn-
HeliHaA 3aja4a — UHTerpasibHoe ypaeHeHue lammepluTeitHa. [NokasaHo cyllecTBOBaHME HECKONMBbKMX pelleHuit. PaccMoTpeHbl MHOrOMEpHbIe UHTErpasibHbie
YPaBHEHMA NepBOro poAa W UX peLleHne C UCMoNb3oBaHWeM perynapusaumu. Pelnenne Metogammu MonTe-Kapno u keazu MonTte-Kapno nogobHbix 3agad
B Vl3y"IeHHOI71 nuTepatype He NpoBOAUNIOChH. Bbin ucnonb3osax MeTo  perynapusaumu naBPeHTbeBa, a TaKXxe Cﬂ)’qaﬁHble n nceBp,ocnyqaﬁHble Yy3nbl, nony-
Y€HHbI€ NMpU NMOMOLLKN NoCeOoBaTEeNIbHOCTU XanbroHa. Pewwena np06nema COBCTBEHHbIX 3HAYEHUN. YCTaHOBﬂeHO, 4YTO OAHWUM U3 NYHLUUX U3 PaCCMOTPEH-
HbIX METOAOB sABNAeTcA MeTog Jlesepbe-PasaeeBa. PesynbTathl pelueHns 3ahaum ANA PasaMHHOrO YMCIA KBaAPaTypHbIX y3/0B MPeACTaBneHbl B Tabnuue.
MCCJ’Ie,qOBaH noaxo Ha oCHoBe ﬂaPaMeTPMHeCKOVI perynapusauun aapa, VIHTePI'IO.ﬂﬂLlVIOHHO-I'IPOeKLI,VIOHHblvl MeToJ, ycpeAHeHHble aAanTUBHbIe NNIOTHOC-
TW. PaccMOTpeHHbIe MeTOAbI MOryT YCMELIHO NMPUMEHATLCA NMPU PELLEHUM NMPOCTPAHCTBEHHBIX KpaeBbIX 3ajay Ana obnactei cnoxHon ¢opmel. Paccmatpu-
BaeMble NOAXOZAbI MO3BONAOT PACLUMPUTL KPYT 3aZa4 TEOPUM MHTErpasnbHbIX yPaBHEHMWN, peluaeMbix Metogamm Monte-Kapno v keasu Monte-Kapno, no-
CKOJbKY OTCYTCTBYIOT OrpaHU4eHUsA Ha BENUYMHY HOPMbI MHTErpasibHOro orneparopa. PaccMoTpeHa cepus MpUMepoB, AEMOHCTPUPYIOLLMX CTeneHb 3 dek-
TUBHOCTU Mccne,qyeMoro MeToa.

Knioueeble cnoea: uHmezpanbHele ypasHeHus, 8bicokas pazmepHocms, memod Mornme-Kapno.
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