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Mathematical models of motor traffic flow on highway sections on highway sections near
intersections or flow segregation sections are considered. In these models, the particles cor-
responding to motor vehicles move according to probabilistic rules along a cellular field that
moves at a constant speed in the direction coinciding with the direction of movement of the
particles. A cell field consists of sequences of cells. Each such sequence corresponds to a lane
on the highway. The time scale in the model is discrete or continuous. The model is a dynam-
ic system with a discrete state space and discrete or continuous time. The mathematical
description of the model can also be presented in terms of a cellular automaton or a random
process with prohibitions. At any given time, there is no more than one particle in each cell.
With each movement, the particle either moves one cell in the direction of movement, or
moves to the next lane, or remains in place. The speed of the traffic flow on the highway sec-
tion corresponds to the sum of the set speed of the cell field and the average speed of the
particles relative to the field. The studied characteristics are the speed of the traffic flow, its
intensity and the probability of successful rebuilding of the vehicle on the considered section
of the highway. When setting the parameters of the model, data from measurements of the
characteristics of traffic flows on highways are used. Analytical approaches have been devel-
oped to evaluate the studied characteristics. Computer programs have been created to
implement the developed calculation algorithms. The results of calculations are given.
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Introduction

This paper discusses the application of mathematical model-
ing in the problems of traffic management, such as the organiza-
tion of the right turn from the main road to the secondary road at
unregulated intersections with pedestrian crossings, the choice of
the moment when the vehicle changes lanes in the area of segre-
gation of traffic flow, the organization of traffic on the stretch
between intersections.

The issues of developing methods for assessing the quality of
motor vehicles for a number of properties were considered in [1].

The study of the characteristics of road traffic flows using
mathematical and simulation modeling is related to the issues of
road safety and environmental safety [2]-[4].

In mathematical models of motor traffic flow, referred to the
class of microscopic models, the movement of vehicles is de-
scribed by the movement of particles through a cellular field
(lattice). Each vehicle corresponds to one particle. The field is
divided into cells (cells) that form infinite or closed sequences,
with each such sequence corresponding to a lane. Models of this
class can be interpreted in terms of cellular automata [5] or ran-
dom processes with prohibitions [6]. For the simplest single-
band models, analytical results were obtained, for example, in
[7]-[13]. The characteristics of multiband motion are investigated
using simulation modeling, or in some works, simplifying as-
sumptions are made in [14]-[16] when constructing the model in
order to obtain analytical results, for example, in [16] it is as-
sumed that particles move on a toroidal lattice. In [17]-[24],
mathematical models of motor traffic flow in sections of multi-
lane traffic near road intersections are considered. These works
use the deterministic-stochastic approach developed by A.P.
Buslaev [25], according to which the flow velocity is represented
as the sum of the deterministic component, which corresponds to
the constant velocity of movement of the cellular field set in the
model and the stochastic component corresponding to the aver-
age velocity of particles relative to the field. The deterministic-
stochastic approach was also used in modeling single-lane traf-
fic, for example, in [13].

1.  Models of realignments of motor vehicles on the
highway section

In [17], a mathematical model of traffic on a multi-lane road
in a stream is considered, where it is necessary to change lanes
from one extreme lane to another. It is necessary to estimate the
capacity of the stage depending on its parameters. A method has
been developed for estimating the throughput of the stage de-
pending on its parameters. As an example, the results of calcula-
tions for specific parameter values are given. This kind of prob-
lems are encountered when managing traffic with saturated traf-
fic flows on radial-ring road networks.

In [17] an example of calculating the probability of success-
ful rebuilding of a motor vehicle on a highway stretch is given.

In the considered [17] model, a particle moves on a rectangu-
lar lattice, Fig. 1. The location of particle is characterized by the
pair of coordinates (X,y), where the coordinate x = 0,1,...,n corre-
sponds to the number of the lane, and the coordinate
v=0,d,2d, ... characterizes the location of a particle in the
lane. The length of each zone equals | cells, and L = 21 is the
length of the segment. Suppose, at initial time 0, a particle is at
the point (0,0).

The coordinates of a particle can change at time iAf,
i=0,1,2,... . If, at time (i+ 1}4¢ 4 particle is at the point
(k,Id) k<n, then, at time (i+ 1) 4, with probability pwill
be at the point (k+ 1, (1+1)d) | the particle will be at the
point (k,(I+ 1) d) with the probability #2, the particle will
be at the point (k+ 1, (I+ 1) d) with the probability P4, and
the particle will continue to be at the point ( k,1d) , k<n, with
the probability p, p,+p,+p;+p,=1. The value d is as-
sumed to be approximately the dynamical dimension, i.e., the
sum of the vehicle length and the distance between vehicles sat-
isfying the safety conditions. It is assumed that the dynamical
dimension is represented approximately by a quadratically poly-
nomial of the traffic flow speed. The model is based on the de-
terministic-stochastic approach for modeling transport flows.
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Fig. 1. Movement of a particle on the cellular field [17]

Suppose £ is a random value equal to the particle ordinate at
the moment at that the abscissa reaches the value k, and 7 x is the
related moment, k=1, ...,A. In [17], the following formulas are
obtained for the expectation Mg, Mz, and dispersion D&,

D’rkof.fkand'rk:

Pyt p,
Mg, =——Kd, )
ptp,
kAt
Mz, = ———. @
PP,
py,tp (p,+p3y)
D¢, =kd?| a2y —— | 3)
ptp, (p,+py) 2
(pytpy) (41?2
Dr, =k . 4)

(p,+py)?2

In [17], the generating function for joint distribution of & PR
is obtained:
Pt PaTz,
r{z,2,) = : ®)
1=p,=Py212,
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Assume that the probability that a point of the lattice is occu-
pied equals » independent of the other points states. The attempt
of a particle is realized only if the cell to that the particle moves
is vacant. In accordance with this assumption, the probabilities
P s Py P4 P, are computed. Using the deterministic-stochastic

approach and (1)-(5), one may compute some main characteris-
tics of movement.

The following example is considered in [17]. Suppose the
highway contains m sections, and the length of a highway seg-
ment is equal to L m. The deterministic component of the traffic
flow velocity is equal to ¥ m/sec. Each lane is a sequence of
cells, and the number of these cells is equal to mL/ d( v) , where
a(v) =¢yt e vt czvz, € € |» €, are some constants, d(v)
(in meters) is the dynamical dimension.

One may compute the traffic intensity g 1/sec may compute
using the formula

_(1+n)r
d(v)
where 4, p satisfy the equations
pitpy=441(1-r)
Pyt pyt+p,=2At( 1+ pr).

[v+ ip(1=rd(w ],

The value g is computed under the assumption that

n[pd( v) + =L,

v
A(1-r)
Suppose

p=rld(v) =C/[(n+ 1)y mL,
p=rid(v) =C/[(n+ 1)mL]

p=1/m is the traffic flow density, §=mL. In Fig. 2, the de-
pendence on the flow intensity on the flow density are shown.

q (1/sec)

0.8

L=2000

1 1 1 | 1 1 1
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p(1/m)
Fig. 2. The dependence of the flow intensity on the density [17]

0

The paper [22] develops an approach to choose a place to
begin a change of lane intending to make a turn and choose the
traffic lane phases duration. These durations depend on the time
of day. The methodology is developed on the base of a transport
mathematical models of the transport flow on a section of a
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highway and on the base of measurements on highways. The
results of these measurements were compared with data obtained
in the measurements. The model allows to compute the traffic
intensities for a section highway. The distribution of these inten-
sities has been computed for a section of Leingradskiy prospect.
The model is also based on the deterministic-stochastic ap-
proach. Using the deterministic-stochastic approach, one may
obtain more accurate values of the traffic intensities.

2. Models of traffic flow segregation

Freeway interchange influence areas are very important ele-
ments of highways, which often determine the highway capacity,

(Fig. 3).

|
l‘

Fig. 3. Freeway interchange influence areas

The paper [20] proposes the following model. The particles
of two types move on K-lane section, which is divided into M
segments. The mth segment contains cells of size (length) dm.

The location of a cell is characterized by coordinates { x,y),
where x is the lane index, and y characterizes the location of the
cell in the lane. The wvalues of y satisfy the condition
(m— 1)l <y< mi. There are two types of particles. Particles
of the first type do not tend to transit to another lane. Any parti-
cle of the second type tends to transit successively to the Kth
lane.

The particles of this type correspond to vehicles intending to
move along another road after passing the section. The value dm

of corresponds to the dynamical dimension for the mth segment.
For a time quantum Af, the particle of the first type, located on
the segment $m$ and, with the probability A 1 mA move onto one

cell in the direction of movement under the condition that the
cell ahead is vacant. If a particle is in the cell ( x,¥) , x <K and
the cell (x+ 1,y), y <MI (the cell to the left of the particle) is
vacant, the particle occupies the cell ( x4+ 1,y) with the proba-
bility lz_mA. If a particle of the second type is on the lane

x <K , and the cell located to the left of this particle is occupied,
then the particle does not move.

The paper [20] proposes an algorithm to estimate the proba-
bility that a particle transits to the utmost right lane successively
and the distribution of flow intensities in a segment of segrega-
tion. In the model considered in [20] it is assumed that there are
particles of two types moving a K-lane section divided into M
segments. The length of the mth zone is equal to Lm cells.

Denote by ¢,( k,m) the intensity of the ith type particles
movement along the kth lane in mth segment. In accordance
with the intensity conservation law

ql(k,m) =ql( k., 1), m=23,....M.
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One may compute the intensities of the second type particles
one may compute using the formulas

q,(1,m)=q,(1,m-1)(1-F(L,m-1}),
qZ(kym) =qz(k_ 1vm_ 1)ﬂ(k:m_ 1) +q2(k1m))7
a,(Kom) =g,(Kym=1) (K= Lm=1) + g,(K,m—1),

where f( K, m) is the probability that a particle of the second
type starting to move along the kth lane in the mth segment,
k=1,...K, m=1,...,M, will come to the { K+ 1) th lane
before the end of the segment.

The value #( k, m) is evaluated with formula

L —a(k,m)

}. k=1,...K, M- 1,
[+

plk.m) =0.5+ cp{

where ®( x) is the Laplace function.

X
1
P(x) =— f e™ 2z,
2r 0

vat
a(k,m) =
p(i, 1)
plk,m) (v A1) 2
o k,m) = :
(1-p(k,m))?
vnAt
a(k,m) =———,

v is the deterministic-stochastic velocity for the mmth segment.

m
The probability that a particle transits to the utmost right lane
successively is

a=(g,(K.M) + (K- 1,M— 1) g (K- 1,M)) /o5 g (k1).

Calibration of the model parameters was carried on the base
of data obtained as results of road measurement. The segregation
section of the 4000 meter length was considered.

In the experiment, the section was divided into 40 segments
of the length 100 meter.

The dependences of flow intensities for different lengths and
segments are shown in Table 1.

The paper [18] proposes a stochastic model of flow segrega-
tion, Fig. 34 The traffic flow is represented a particle flow locat-
ed on a two-lane segregation section. Any particle tends to be at
prescribed lane before the end of the section to continue its
movement along the lane. The problem is to estimate the mini-
mum sufficient length of the section.

At any discrete moment i, each particle is at a cell and, in
the interval of the duration A#, the particle tends onto one cell. In
the accordance with the deterministic-stochastic approach, the
cellular field moves in the direction corresponding to the direc-
tion of the traffic flow. It is prescribed to be at the first (right)
lane at the end of the section. The section is divided into two
zones. They are the far zone and the near zone (relative to the
end of the section).

Table 1

Dependence of intensity ¢ 2l/sec on the road lane and segment,

K=5 M=40,L_=100m,d_=25m, v_=10m/sec. [20]
m m m

Number
of lane\ 1 2 3 4 5 7 8
Segment
number
1 0,060 | 0,046 | 0,035 | 0,027 | 0,021 | 0,016 | 0,012 | 0,009
2 0,060 | 0,060 | 0,057 | 0,052 | 0,046 | 0,040 | 0,034 | 0,029
3 0,060 | 0,060 | 0,060 | 0,059 | 0,058 | 0,055 | 0,051 | 0,047
4 0,060 | 0,060 | 0,060 | 0,060 | 0,061 | 0,061 | 0,060 | 0,060
5 0,060 | 0,074 | 0,088 | 0,101 | 0,115 | 0,128 | 0,142 | 0,155
Number
oflane\ | g 10 11 12 13 14 15 16
Segment
number
1 0,007 | 0,005 | 0,004 | 0,003 | 0,002 | 0,002 | 0,001 | 0,001
2 0,024 | 0,020 | 0,017 | 0,014 | 0,011 | 0,009 | 0,007 | 0,006
3 0,043 | 0,039 | 0,034 | 0,030 | 0,026 | 0,023 | 0,019 | 0,016
4 0,058 | 0,056 | 0,054 | 0,051 | 0,048 | 0,045 | 0,042 | 0,038
5 0,167 | 0,179 | 0,191 | 0,202 0’%12 0,222 | 0,231 | 0,239
Number of
lane 17 18 19 | 20 | 21 2 | 23 24
\Segment
number
1 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
2 0,005 | 0,004 | 0,003 | 0,002 | 0,002 | 0,001 | 0,001 | 0,001
3 0,014 | 0,012 | 0,010 | 0,008 | 0,007 | 0,005 | 0,004 | 0,004
4 0,035 | 0,032 | 0,028 | 0,025 | 0,023 | 0,020 | 0,018 | 0,016
5 0,246 | 0,253 | 0,259 | 0,264 | 0,269 | 0,273 | 0,277 | 0,280
Number
oflane\ 1,5 | o6 | 27 | 28 | 29 | 30 | 31 32
Segment
number
1 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
2 0,001 | 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
3 0,003 | 0,002 | 0,002 | 0,002 | 0,001 | 0,001 | 0,001 | 0,001
4 0,014 | 0,012 | 0,010 | 0,009 | 0,008 | 0,007 | 0,006 | 0,005
5 0,283 | 0,285 | 0,287 | 0,289 | 0,291 | 0,292 | 0,293 | 0,294
Number
oflanc\ | 43| 3y | 35 | 36 | 37 | 38 | 39 40
Segment
number
1 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
2 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
3 0,001 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000
4 0,004 | 0,003 | 0,003 | 0,003 | 0,002 | 0,002 | 0,002 | 0,001
5 0,295 | 0,296 | 0,297 | 0,297 | 0,298 | 0,298 | 0,298 | 0,299
L ] n
1\
| l Vi
]
L ]
r
| —t— 1 v,
[ §
v ™
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The rules of the movement of a particle in the mth zone,
m=1,2, are the following. (1) If a particle is in «itself” lane,
then this particle continues to be in this lane until the end of its
movement. For the time interval of the duration Af, with the
probability 4 Io.mA + 0( A) , a particle tends to move onto a cell

forward if the cell ahead is vacant. (2) If a particle is not at “it-

self” lane, then, with the probability Afsp mA , the particle comes

to “itself” lane. (3) If a particle is at “itself” lane, the cell ahead,
located at the adjacent lane, is occupied, then, with probability
’Ii o mAt, then the particle moves forward. (4) If a particle is
not in “itself” lane and the conditions (2), (3) are satisfied, the
particle does not move. It is assumed ’Iisf ,=0, i.e., the particle
located in the second zone and is not in the “itself” zone, then the
particle may not move forward without a transition to the “itself”
lane.

The paper [18] proposes an approach to estimate the proba-
bility that a particle will come successively to the prescribed
lane. In [18], it is assumed the following. The probability that in
a cell, located in the meth lane and kth lane, there is a particle of

the ith type r!.( k,m) independently of the states of the other
cells. The probability that this cell is vacantis 1— r(k,m) ,

r{k,m) =r (k,m) +ry(k.m), i=1,2, k=1,2, m=1,2.

The probabilities and the intensities, k=1,2, satisfy the
equations

g,(i,2) =r (L2 (vy+ 1, A(1-7(i,2)), i=1,2,
qi( k,2) =ri( k,2) Vo i=1,2, k#1,

r(k2) =r (k2) +r(k2) £1,

r(k2) >0, 7,(k,2) >0.

For any k=1, 2, this system of equations is reduced to a
quadratic equation. If there are more than one solutions of the
system, then we choose the minimum values of rl( k,2) and
ro(k,2).

Denote by #( i,m) the increase of the non-moving coordi-
nate system. The approach to evaluate the characteristics of
#{ {,m) is developed. This approach is similar to the approach
proposed in [20] and described above.

A numerical example is represented in [18]. It is assumed that

d( v) =a,ta v+ azvz,

a,=5.7m,a =0.5sec a,=0.03 secZ, At=0.8 sec,

A =4 ,=11/sec

sp, L 5p,2

ﬂ.&f']=Auf_l=15f'2=lof'2=0.5 1/ sec, v, =10m/ sec

p (LD =p,(1,1) =p ,(2,1) =p,(2,1} =0.0025 1/ m,

Ll =L2=20m, v, =3m/ sec, v2=5m/sec.

The dependences #( 2) , #( 2) on v ,are represented in Table 2.

Table 2
Dependencies r(2) and (2) from v, (m/sec) [18]
V, 3 5 7
r2) 0. 0.422 0.365
B(2) 0.993 0.987 0.946
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3. Modeling traffic flows on crossroads

The scheme of transport intersection planning and traffic
management at an intersection must ensure to minimize the
number of road accidents and time delays of vehicles [23], [24].
A decrease of the velocity of traffic at regulated intersections
with a high density occurs due to the prolonged phase of the traf-
fic light prohibitory signal and the organization of right turn traf-
fic. At regulated crossroads, the intensity of vehicles turning to
the right makes it difficult for the public transport to move along
the designated line and causes a queue to form in the second
lane. Vehicles turning from the second lane create a queue. This
leads to that maneuver are impossible for several cycles. A con-
gestion is formed at the crossroad. The percolation of vehicles
into the designated lane is difficult because the quantity of vehi-
cles is great. The queue of the public transport vehicles causes
the increase of the temporary delays for these vehicles.

A scheme of the road intersection studied in [23], [24] and its
geometrical dimensions are represented in Figure 5 and Table 3.

@ O ] [
T Cars in a queue on a dedicated lane

I\
A

N
N
PPN PP ® ||||||
Place of queue research )

Fig. 5. Scheme of intersection

|l

Table 3
Geometric dimension of intersection [24]
Parameter Meaning

Number of lanes (main direction) 4

Width of the selected strip, m 4,0
Width of the carriageway lane, m 3,3
The duration of the traffic light cycle, s 150
Duration of the green signal (right turn), s 50
Duration of the green signal (moving straight), s 80

Measurements were caried out on the road network of Moscow
to evaluate the delays of the vehicles at a regulated intersection.
The papers [23], [24] consider a mathematical model of the cross-
road that is located at the address: Leningradskiy prospect, 40.

There are four lanes on the main carriageway of this cross-
road. These are the following lanes. The rightmost lane is a dedi-
cated lane. Only public transport vehicles may be located at the
lane. The vehicles located in this lane move forward and perform
a right turn. In the second lane there is a forward movement. A
small portion of the vehicles moving in the second lane slows
down waiting for the possibility of changing lanes to the right to
make a right turn. In the third lane vehicles move only forward.
From the fourth lane, left-turn maneuvers are performed, and a
small portion of the transport flow move in the forward direction.

The transport flow intensity in the fourth lane has no effect
on the characteristics of traffic in the dedicated public traffic
lane. Hence the main component of the transport flow is formed
in the first, second and third lanes. Measurements of the traffic
intensity on different weekdays and times of the day during the

e —
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busiest days and hours to obtain the transport flow characteristics
at different traffic intensities, with a dry surface.

Any vehicle passing through the crossroad is assigned to one
of the following types.

The buses are assigned to the type 1, the trucks are referred to
the type 2, and the cars are assigned to the type 3. In [24] the
results of measurements are represented for the following four-
time intervals: from 5 a.m. to 7 a.m., from 7 a.m. 9 a.m., from 2
p-m. to 4 p.m., from 7 p.m. to 9 p.m. The number of light phase
cycles is more than 100 in each measurement. In accordance
with the results of calculations, the length of the cars queue is
nearly directly proportion to the traffic intensity. In the case of a
small traffic load, the queue is also small or there is no queue.

The results of the measurements may be used as input data
and settings for the parameters of the traffic mathematical model
for a highway with various types of vehicles. If the traffic load is
great, then, during a cycle, the queue decreases but does not dis-
appear at all.

The dependence of the queue length on the load is represent-
ed in Figure 6.

g 100

"E 80

e 60

2

o 40

3 20

o2

A

0 0.2 0.4 0.6 0.8 1
Loading level - z
e 50% --#--85% —&—95%

Fig. 6. Dependence of queue length on load

Papers [23], [24] consider a two-lane traffic model similar to
the model is considered in [20]. A particle of the first type do not
tend to change lanes. A particle of second type tends to transit to
the utmost right lane. The section is divided into M segments.
The length of each segment is equal to I cells. The dimension of
any cell, located of the mth segment equals d o M= 1,....M.

If a particle of the first type is in the kth lane and the mth
segment, then, during a time step, the particle tends to move with
the probability l]_mA. The attempt is realized if the cell ahead is
vacant. If a particle of the first lane and the adjacent cell is
occuoied, then the particle does not move.

Denote by r (k,m) the there is a particle of the ith type ina
cell of the kth lane and the mth zone.

An approach similar to the approach proposed in [20] is used
to evaluate the flow characteristics.

A numerical example is considered in [24]. It is assumed that
M=5 A=0.9 sec, 4 . =1|’2=0.5 1/sec, 12‘ . =11272= 11sec,
7(1,1) =0.56 1/m, #(2,1) =0.16 1/m, Lm=20 m, dm=20 m.

In Table 4, the results of computations are represented.

Table 4
Dependences of « and r(2,M) on v _

Vo 9 1 15
r2.,5) 0,348 0,331 0,318
a 0,999 0,988 0,949

Conclusion

The paper describes traffic mathematical models for traffic
flows on highway segments located before road intersections.
The traffic flow is represented in these models by particles mov-
ing on a cellular field. The models are based on the determinis-
tic-stochastic approach to traffic modeling. The calibration of the
models was fulfilled on the base of measurements on highways
of Moscow. The models may be used for optimization of traffic
control. These problems are also related to problems of the ecol-
ogy and the transport safety.
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AHHOTauuA

PaCCMOTPeHbI MaTeMaTnvieckne Moaesin ABMXEHUA aBTOTPAHCMNOPTA Ha y4aCTKaxX aBTOMaFMCTPaﬂeVI B6nM3n NepeKpecTKoB UIKN y4aCTKOB cerperalum noToKoB.
B atux MoZenAx YacTtuubl, COOTBETCTBYHOLLNE aBTOMOGVInﬂM, ABWXYTCA NO BEPOATHOCTHbIM MpaBWiaM BAOJIb KJIETOYHOrO MNoJsis, KOTOpoe ABMXETCA C
MOCTOAHHOM CKOPOCTbIO B HarpaeneHuu, COBMaAatoLLEeM C HarpaBieHMeM ABMXKEHWUA YacTul,. [one Aveek cocTouT U3 nocnegoBartenbHocTen Adeek. Kaxaasn
Takaa NnocsiefoBaTeNlbHOCTb COOTBETCTBYET Monoce Ha Lwocce. Maciitab BpeMeHn B MOAENU AUCKPETHbIA WU HempepbiBHbIM. Mogenb npeacrasnser coboit
ANHAMUYECKYIO CUCTEMY C AUCKPETHbLIM MPOCTPaHCTBOM COCTOAHUM U ANCKPETHbIM UIIN HernpepbiBHbIM BPpEMEHEM. MaTeMaTMHeCKOe onncaHne Mogenun TaKkxe
MOXeT 6bITb npeacraBneHo B TepMUHAX KJI€TOHYHOro aBToMata uin cnyqaﬁHoro npotecca C 3anperamu. B nto60oi1 MOMeHT BpeMeHUu B Ka)KAOVI AYenKe HaxoguTca
He Gonee OAHOﬁ 4acTuubl. nPVI Ka>XgOM OABUXKEHUU YacTula nmbo nepemeLlaeT oAHy KNeTKy B HarpaBleHUn ABMXEHUA, nmbo nepemeLlaeTca Ha cneayroLlyto
nonocy ABMXEHUA, nnbo ocraeTca Ha MecTe. CKOPOCTb TPaHCNOPTHOro NOTOKa Ha Yy4acCTKe LoCcCce COOTBETCTBYET CyMMe 3aAaHHOVI CKOpOCTU nonsa AYENKN N
CpeAHell CKOPOCTU YacTUL, OTHOCUTENbHO MoniA. M3yyaeMble XapakTepUCTUKM — 3TO CKOPOCTb TPAHCMOPTHOrO MOTOKA, €r0 UHTEHCMBHOCTb U BEPOATHOCTb
YCMELIHOM MepecTPOMKU TPAHCMOPTHOrO CPeACTBa HA PacCMaTpUBAeMOM Y4acTKe Tpacchbl. [1py HacTpoiike napaMeTpoB MOAENM MCMOSb3YIOTCA AaHHble
M3MePeHMF1 XapaKTepUCTUK TPaHCMOPTHbLIX MOTOKOB Ha aBTOMarncrpanax. Pa3p360TaHbl aHanuUTU4eckue noaxoAbl K OLEeHKe U3y4aeMblX XapaKTepUCTUK.
COB,CI,aHbI KOMMNbOTEPHbIE NMpOrpaMMbl A4Jia peanusaumu PaBPaGOTaHHbIX aNIrOpUTMOB pac4eTa. rlPVIBep,eHbl pe3ynbTaTtbhl pac4eToB.

Knioueebie cnoea: mamemamuyeckue modenu O8UKEHUA, XapaKMePUCMUKU d8momobusibHo20 08UXKEHUS, MHO20NOIOCHOE J8UKEHUE.
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