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During all periods of the study of telecommunications systems traffic, the analy-
sis was based on mass service theory. The subjects of the study here are request
flows to be processed by some limited performance resources. Resource con-
straints and the random nature of requests' receipt lead to refusals in process-
ing or queues. The first works devoted to the analysis of teletraffic belong to
A. K. Erlang. Request flows represented flows of requests for connections in net-
works with channel switching. Since requests were received from a large num-
ber of independent users, the flows of such requests could be defined as station-
ary, ordinary with no effect, or as recurring requests, with an exponential distri-
bution of time intervals between neighboring requests. Connection request
flows to a telephone exchange node are a superposition of a large number of
low-intensity flows from independent users. Therefore, the fixed Poisson flow
model describes the real flows in telephone exchanges with channel switching
quite well. Therefore, the stationary Poisson flow model describes real flows in
telephone exchanges with channel switching rather well. The emergence of
telecommunications networks with packet switching, especially multiservice
networks, showed the impossibility of using Poisson flow models for their analy-
sis. The article is devoted to the analysis of delays in queues of queuing systems
with correlated stationary flows of general type requests. The traffic of packets
in multiservice networks is typically characterized by a high degree of correla-
tion. On the basis of interval methods of analysis, the relations generalizing the
Khinchin-Pollaczek formula for the average value of waiting time in queuing sys-
tems with flows of the general kind of requests are obtained. The main parame-
ters to be analyzed when outputting the above formulas are time intervals
between neighboring requests. It is shown that the values of time delays in
queues depend on the dispersion and dispersion index of a random value char-
acterizing the degree of additional maintenance of processed requests.
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Introduction

Many different models with non-exponential laws of proba-
bility distribution between requests come into being [1]. Howev-
er, all these intervals are considered mutually independent. Such
models poorly reflect the properties of flows, because flows of
packets in real networks are strongly correlated and have a batch
nature [1,3]. The description of such flows can be carried out
using self-similar process models [4, 5]. The main disadvantage
of self-similar process models is their complexity. The over-
whelming number of researches in the field of self-similar flows
occurs in isolation from the processes of their processing in the
queuing service system. Attempts to obtain analytic ratios that
determine delays and queue sizes in queuing systems with self-
similar flows are usually accompanied by significant difficulties
and have not led to any significant practical results. Consequent-
ly, the analytical study not only of the flow itself but also of the
queuing systems in which it is processed seems to be hardly real-
istic [1]. Indeed, queues in the queuing systems are formed as a
result of the interaction of two flows, one of which is a flow of
requests coming to the system and the other one is a flow of re-
quests leaving the queue. The specified flows are strongly corre-
lated. As a result, the total flow loses its long-term dependence
typical for self-similar processes [3].

The insufficient efficiency of applying self-similar process
models to the analysis of packet teletraffic resulted in a number
of models controlled by the Markov chain. A special case of such
models was called "models with hyper-exponential event flows"
[6]. In a further development, the flows were named MC-flows
(Markov Chain), MAP-flows (Markovian Arrival Process), and
their generalization - group BMAP (Batch Markovian Arrival
Process) input flows. The evolution of such models is well repre-
sented in the review [1]. It is also noted that it is important to
take into account the correlation properties of teletraffic because
the presence of positive correlation significantly increases the
size of the queues and delays in the queuing systems. The influ-
ence of correlation dependencies in an incoming teletraffic flow
has been considered several times in the papers of the author of
this paper, where a direct dependence of the average queue size
on the correlation coefficients of the input teletraffic flow has
been established. [2, 3]

Additional Maintenance Time

All classical theory of the queuing systems is based on the as-
sumption of mutual independence of incoming requests. Even the
well-known Kendall classification [7] does not imply the possibility
of considering the correlation properties of the investigated flows,
but only considers the laws of distribution of the corresponding
probabilities. There are a lot of works considering different laws of
interval distribution of probabilities between neighboring requests,
not Poisson's distributions of probability numbers of requests on
some time interval and some others. However, they presuppose the
mutual independence of incoming requests.

One of the promising, in our opinion, directions of studying
packet traffic is the Interval method [3], which allows replacing
the analysis of time intervals between neighboring requests and
time intervals of processing requests with the analysis of one
random value — the number of requests received during consecu-
tive time intervals of processing requests. We have shown that
the dispersion and correlation properties of the specified random
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value, at a given loading, fully characterize the average queue
size in the queuing systems [8, 9].

In this article, as a unified random value characterizing the
input request flow and its processing in the queuing systems, we
will consider another random value u, representing the differ-

ence between the request maintenance time 7, and the time in-
terval 4 between two neighboring requests on the i-th interval
u, =7, — & . If the interval of processing 7, turns out to be bigger
than the interval 4, then the request maintenance on this inter-

val is not completed in time. Therefore, the value is called the
additional maintenance time. This value is included as the only
external variable in the balance equation set by Lindley [10],

wp=w,, tuy, )
=7, =8 o W, +7,-8 20

u =—-w

; -1 if Wi—1+Ti_19i<0.

In all cases when the second inequality is executed, w, =0.

Obviously,
i—1
Wi = Z u;
jme 2

L. Kleinrock in his work [11] noted the determining influence
of the specified value on the size of delays and queues in the
queuing systems. Believing that the values of 7, and g are not

correlated and mutually independent, he significantly limited the
requirements for the flows. However, packet flows in multi-
service telecommunications networks do not satisfy these re-
quirements because they have a high degree of correlation.
Figure 1 shows the fraction of the influence of correlation
properties of the video traffic stream on the average size of the
queues (the upper chart) and the fraction obtained without con-
sidering the influence of correlation (the lower chart) with the
same values of the load factor p . The difference is impressive

and shows that correlated dependencies of packet traffic flows
cannot be ignored.

Let us square both parts of equation (1). After averaging at a
significant interval of time, we obtain:

1 —_—
U~ wi, +_u2i =0
2
: 3)
By substituting
i—1 i—1
W, = u,=wy+ D u;
Jj=—0 J=1
We get
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Fig. 1 Fractions of influence of video traffic stream correlation
properties on average queue size

Accepting the hypothesis of the attenuation of the correlation

. w.u, =W, u, , hence
bond, we can consider that 0" 0 i ’

u,=-w, u,- (5

The first member of the specified difference represents the
average value of the product of the function by its integral (sum),
therefore

u-Su =S Rk =S R )+ ©)
= =0 pa

Here R (k) — the value of the correlation coefficient of the
variable u,, when shifted by k intervals. By substituting in (5),

we get:

l\)
l\)

SR +u7 i, = S R ()i, =, w4,
k=1 k=1
or
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Thus,

D, +23 R, (k) +(u,)

w = =
(—u,) (7
Let us replace the variable v, = —u, , in this case, the numera-

tor value will not change. We will also introduce the dispersion
index

J,=1+23 (k)
k=1 s (8)

where 7 (k)= m is the normalized value of the correlation
coefficient. Then, we will obtain a fundamental ratio suitable for
the analysis of correlated input flows of requests that generalizes
the known Khinchin-Pollaczek formula:

—_DJ, \Ti
W= Zi

2Vl 2 . (9)
Algorithm of forming an array of the random variable v, ,

characterizing the traffics

Let us take a look at the sequence of source data processing.
Arrays of packet lengths / [Bit] and packets arrival mo-

ments ¢, [us] are introduced. The limit value of the number of
packets M, the ordinal number of the incoming packet i =0;,
the starting point ¢, [sec] =0 [us], the starting value of the vari-
able v, =0 [us] are set. The total processing time of the packets
T,[c]1=0 [us], the total waiting time ¥, =0
of the waiting time in the queue w, =0, the bandwidth value of
the channel C; [Mbps].

1. Switching to the next package i =i +1.
2. The moment ¢,,, [sec] of the next packet arrival time is en-

, the initial value

tered.
3. Interpackage interval is determined &% =1,,, —¢, [us]
4. The coefficient f = — [_] is calculated.
Co Bit

4. The length of the next packet in bytes is entered — /, [ Bit] .

5. The packet processing time is determined in microseconds

T, =kl

ack™
6. The total processing time of packages in microseconds is
determined 7, =T,  +7, [us]
7. Additional
u, =7,-0,v, =

maintenance  time is  determined
u, [us].

8. Remaining time is determined A, =w, | +u;, [us]

9.1f A, <0, then v, :==—w,_, [us]

10. Recording v, into an array V.

11. Determining the current waiting time in the queue
w,=w,, +v, [us]

12. Determining the total processing time 7, =7, | +7, [us].

13. Total waiting time W, =W, +w, [us].

14.1f i< M —1,movingtop.l. p, = Y;—M

[us].

M

15. Average delay value =M
M
16. Load factor
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17. Average intensity 4 = M

tM

... = T
18. Average packet processing time 7 = VM [us].
19. Average interval between packets V= %

20. Average queue size 5 =wA [us].
21. Output of results and array V' [us].
22. Organizing 10 cycles for the values C_, corresponding to

p,=0,1;02..09:.0. ¢ =c, 20 and drawing charts for all
Px

the average values of the parameters and dependence C_ on the

coefficient p .

Conclusions

Thus, we obtained a fundamental ratio (9) directly linking the
dispersion and dispersion index of a variable with the average
maintenance delay value in a single-line queuing system.

Mathematical expectation, dispersion, and dispersion index
of the specified random variable fully determine the average size
of the queues in the queuing systems, at the specified value of its
load factor, and the given algorithm shows the method of obtain-
ing the values of this variable.
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SAAEPXKHWN B OHEPEAAX CMO CO CTALUMOHAPHBIMU NMOTOKAMU 3AABOK
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AHHOTauusa

Cratba nocesllieHa aHanu3y 3a/lepXeKk B odepefax cucteM Maccosoro obcnyxwueaHua (CMO), ¢ KoppennpoBaHHbIMM CTaLMOHAPHbIMU
noTtokamu 3asaBok obuuero sBuga. [na Tpaduka nakeToB B MySbTUCEPBUCHBIX CETAX XapaKTepHa BbICOKas CTEMeHb KOPPENUpPOBaHHOCTY.
Ha ocHoBaHWUM MHTepBabHbIX METOZJOB aHaM3a, MOMy4eHbl COOTHOLLIEHNs, 0b6o6Latolme GopMyny XuHuuHa-llonnayeka Ana cpegHero
3HaYeHWUA BPEMEHU OXMZJAHWA B CUCTEMaX MAaCCOBOTO OBCMY>XMBaHMA, C MOTOKaMU 3aABOK obuero Buaa. OCHOBHbIMU aHaNU3MpyeMbIMU
napaMeTpamu Npy BbIBOAE YKa3aHHbIX GOPMyn ABNAIOTCA BPEMEHHbIE MHTEPBasbl MEXY COCEAHUMU 3aABKaMu. [lokasaHo, YTO 3HaueHUs
BPEMEHHBIX 3aZlepXeK B O4epeAsAX, 3aBUCAT OT AUCMEPCUM U MHAEKCA JUCMEPCUM CITyHalHOW BENIMYMHBI, XapaKTepusytollel CTeneHb
poobcnyxueaHna obpabaTbiBaeMbIX 3adBOK.

Knro4veesblie cnoea: cucmembl Maccogozo O6Cﬂy)KUGGHUﬂ, NOMOKU 3dA80K, 8bEMEHHbIE 3GaeP)KKU, ouepeau, Kosapuauus, 3azpy3sKa.
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