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We introduced generative transformer-based network traffic model suitable
for generating and classification tasks. Only packet size and inter-packet time
sequences are used as flow features to unify the inputs for the two tasks. The
source feature space is scaled and clustered with K-Means to form discrete
sequences as model inputs. The model can be trained in two modes: (i)
autoregressively, for network traffic generating, where the first token of
training sequence represents a flow class, (ii) as a network flow classifier. The
evaluation of generated traffic by means of Kolmogorov-Smirnov statistic
demonstrated that its quality is on par with the first-order Markov chain,
which was trained on each traffic class independently. The metric measured
distances between source and generated empirical cumulative distributions
of such parameters as packet size, inter-arrival time, throughput and number
of packets per flow in directions to and from traffic origin. It was shown that
enriching the dataset with external traffic from different domain improves
quality of the generated traffic on target classes. The experiment results
showed positive influence of generative pre-training on quality of the traffic
classification task. In case of using the pre-trained model as a feature extrac-
tor for a linear algorithm, the quality was close to Random Forest trained on
the raw sequences. When all model parameters are trained, the classifier out-
performs the ensemble on average by 4% according to the Fl-macro metric.
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Introduction

A network flow classification system is the key component
for network traffic control and monitoring tasks. The current
trend aimed at increasing user privacy shifts development of
network protocols and web applications towards encrypting plain
text information, such as Domain Name Service (DNS) respons-
es and requested services within Service Name Indicator (SNI)
field of a TLS handshake, significantly limiting applicability of
deep packet inspection. A viable alternative could be a machine
learning based system for statistical discrimination of network
sessions.

The steady growth of available compute power and presence
of significant volume of data are the major catalysts for devel-
opment of machine learning algorithms for a broad range of ap-
plications. A notable attention gained concept of transfer learn-
ing, when once trained model can be applied for a different task
within the same application domain. This is closely followed by
the idea of model pre-training in self-supervised mode on a large
unlabeled corpus, which further allows applying the model on
various supervised tasks and it is especially effective in scarce-
label scenarios. Examples of such self-supervised approaches can
be often found in natural language processing (NLP) domain
within approaches aimed at transforming text to numerical repre-
sentation, which started with Word2Vec embeddings [1] and
have been significantly improved with models based on Trans-
former blocks [2]. The transformer architecture has become the
cornerstone for numerous papers within NLP field, pushing state-
of-the-art results for various tasks, such as text classification and
sequences tagging and outperforming recurrent and convolution-
al models. The architecture was designed to process discrete se-
quence more efficiently, in part because of the built-in multi-
headed self-attention mechanism. The architecture allowed sig-
nificant speed-ups for pre-training on large data volumes and
made possible to train larger than ever models. Several papers
demonstrated effectiveness of auto-regressive models using
transformer decoder blocks for text generating tasks [3], [4],
whereas encoder blocks are preferred for building discriminative
models, achieving superior results on various classifications
tasks [5], but not suitable for sequence generation problems.

An application of approaches originally developed for natural
language processing tasks is not a rarity for network traffic field.
For example, one of the first works using Word2Vec for traffic
classification domain was presented in [6], where the authors
trained the model on domain names from DNS queries and fur-
ther applied it as an extractor of a feature subset for network flow
categorization. It appears, the authors of [7] were inspired by the
papers devoted to text translation and presented a traffic classifi-
cation model utilizing only packet sizes. Structurally, the model
consists of packet embedding, followed by bi-directional recur-
rent encoder-decoders, whose output is branched off to the clas-
sification and the input reconstruction blocks. Thus, the tasks of
classification and input sequence modeling are solved simultane-
ously during training. However, the results of the experiments
showed when the share of reconstruction error in the total loss
function increased, the classification performance deteriorated,
which indicates the redundancy of the joint loss function for this
task.

Taking into account the tendency to encrypt signaling infor-
mation within flows and packets, very few statistical flow attrib-
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utes for the discrimination task are left, namely, inter-packet time
(IPT) and packet size (PS). Moreover, these parameters can be
used to build statistical traffic generators of individual devices
and flows. Taking into account the similarity of input data, the
purpose of our work is to create a unified model synthesis ap-
proach, applicable for generation and classification of network
flows of different categories. When synthesizing the approach,
which uses decoder transformer blocks, it is necessary to give
answers to the questions concerning (i) transformation of net-
work flows into integer discrete sequences, (ii) peculiarities of
creating a model, which takes into account the specifics of each
task, (iii) training procedures and (iv) application of trained
models.

The results of the work are as follows:

1. For the first time we show the generative framework for
synthesis of single-model network traffic generators and classifi-
ers that contain information about different traffic classes.

2. The proposed approach allows constructing a model
that can be used as an independent generator of traffic of differ-
ent classes, and the quality of generated data is comparable by
objective metrics to a Markov-based model that is trained for
each class separately.

3. Pre-training on the traffic generation task improves the
classification quality. Also, the pre-trained model can be used as
a feature extractor for classifiers.

4. We release the source code, datasets and generator
checkpoints.

Proposed framework

The use of a unified input data representation for traffic gen-
eration and classification tasks allows to apply a common ap-
proach to model building. The input object is a bidirectional
packet stream with packets sharing the same transport layer pro-
tocol and common [IP address, transport port] pairs.

Traditionally, transformer-based models have a limitation on
the length of the input sequence, as the complexity of processing
grows quadratically with its length L. The network stream itself
may be represented as a matrix F € L X 2:

F = [po,P1, N Ty

where p; = [PS;, IPT;] is a vector with i-th packet features,
where PS has negative values for direction opposite to the flow
initiator, and inter-packet times are always positive.

Taking into account that transformer models operate with
discrete inputs, it is necessary to perform conversion of the initial
two-dimensional feature space into one-dimensional discrete
one, which can be considered analogous to "tokenization" for
NLP tasks.

One of the possible options is to use "soft" quantization ap-
proaches, when the source space is approximated by components
of mixture distributions, for example, Gaussian ones. But mix-
ture models have a significant number of parameters to train (in-
cluding covariance matrices and vectors of mean values), which,
given a significant amount of data (millions of network flows),
makes them hardly applicable for this task.

On the other hand, "hard" quantization models, such as K-
Means, are simpler and more accessible for learning on large
volumes of information, and the number of total parameters cor-
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responds to the number of selected clusters. Given that K-Means
operates in Euclidean distance space, it is necessary to scale the
initial features to correctly form the clusters. Thus, the packet
sizes in bytes were linearly scaled by dividing by 1500 (as the
maximum possible value of an IP packet), and the inter-packet
intervals measured in microseconds were logarithmized (except
for the values equal to 0).

The next step is to augment the cluster sequence with special
tokens, which denote the beginning and end of the flow. When
training a model for the traffic generation task, we assume that
assigning the first token in accordance with the proto-
col/application of the stream will afterwards allow to sample the
packets (encoded as cluster numbers) by submitting only the
token of the required application. The generation process stops
when the end of the flow token appears. It should be stressed that
in order to generate class-specific flows, the training data has to
contain flow labels. As for the classification task, we can either
train model from scratch, or adapt a trained generator. When
adapting pre-trained with class-specific tokens model, the first
token has to be either masked (with the help of the attention
mask) or put the same for all the flows. Additionally, if the num-
ber of packets is less than the limit , the vector is appended with
special PAD tokens.

GPT-2 was chosen as the target architecture [3], which was
successfully applied for a number of applications in the natural
language processing domain. The basic configuration of GPT-2
consists of 12 decoder blocks, each having 12 attention heads,
with the decoder dimension equal to 768. Such model has about
120 million parameters, which is quite expensive for training.

To reduce the training cost, the model configuration is opti-
mized in terms of used parameters. Thus, in our model the num-
ber of decoder blocks was halved to 6 that corresponds to the
configuration of distilled versions of transformers [8], while the
decoder dimension was reduced to 512. Moreover, studies of the
architecture showed that decreasing the number of attention
heads to 8 practically does not affect the final performance [9].

As a result, the classifier training process can be divided into
the following stages:

1. Flow assembling and packet feature extraction

2. Training the clustering model with the subsequent to-
kenization of packets in the flow.

clusters

3. Autoregressive model training (optional, allows using
the model for traffic generation).

4.  Training the model for the flow classification task.

The generic model is illustrated in

Fig. 1. Note that corresponds to two special tokens with
quantized packets, is equal to the number of flow classes
within a dataset, is the number of cluster, and  is the num-
ber of special tokens. The model configuration is fixed and does
not change except for the input dimension of cluster embeddings
block that depends on the number of classes during pre-training
(which can widely differ across datasets), and the classification
layer is affected by a training mode. Thus, during generative pre-
training, that corresponds to the total
number of tokens, or for the classification task.

Used data

We adapted NFStream [10] to assign flow labels and extract
packet features from .pcap files, which in turn utilizes deep
packet inspection module nDPI. The flow export timeout is set to
one minute, thus, prioritizing the classification task during pre-
processing. For long sessions, this can lead to multiple flows
with the same key (IP addresses, ports and protocol), which are
fragments of the first flow and require filtering when training
models in the classification mode.

{L+2)x1
network flow packets
Lx2
K-Means cluster
— h embeddings
token (Ncl+Nt+Nc)x512
adding —_—
[0...L+2)
positional
embeddings
-_ 128x512

Table 1
Used traffic datasets
Name Total .pcap size, GB Flow number, Source
thousands
UNSWB 100 2048 [11]
ICSX 421 [12]
IoT 575 [13]
Local 484 [14]
classification layer
512xMNout
{L+2)x512 -
{L+2)x512 5]
® Transformer ]
— —
decoder ]
(L+2)x512 (x6) ]

Fig. 1. Proposed network traffic model
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The used for model evaluation datasets are listed in mance analysis when "UNSWB" and "ICSX" were used as
sources of additional (external) data for corresponding evaluation
scenarios. Target traffic was split with ratio 3:1 to form a training
and test sets, while preserving class proportions. The distribution
of classes in the classification training set is shown in Fig. 2. The
preprocessed datasets and model code can be found in [14].

Table /, where "Local" denotes our custom traffic dump that
had been collected in the campus network for ten days, and "loT"
represents flows of IoT devices only. The artificial "UNSWB"
and "ICSX" datasets are often used for evaluation of malware
detectors that allow us to represent them as external. Thus, "Lo-
cal" and "loT" were chosen as target datasets for model perfor-
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Fig. 3. K-Means clusters used for quantization of the source packet space
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According to the analysis of extracted flows, the number of
packets per flow in more than 99.9% of cases does not exceed
126, which makes possible to set the model’s input dimension to
128, taking into account special tokens. As a result, the model
without the output layer has about 24 million parameters, which
is about 5 times less than a GPT-2 model with the basic configu-
ration. In addition, the length of the input sequence depends on
the learning mode.

When training the generator, the number of used packets is
selected as L = 126 to stimulate accounting of all available flow
statistics. In the classification mode, the important factor is the
speed of decision-making, the quality of which, in turn, depends
on the number of available packets. Considering the analysis of
these relationships given in [15], L = 20 was selected.

Given the significant amount of data (hundreds of millions of
packets), a library supporting CUDA accelerators, libKMCUDA,
was used to train the K-Means clustering model. The maximum
number of clusters was chosen empirically with logarithmic step
in order to minimize data loss during quantization. As a result,
during the initialization of the algorithm the number of clusters
was selected equal to 21* = 16384 that yielded 9902 non-empty
clusters after training.

The procedure was conducted once for all evaluation scenari-
os on the aggregated training set. As it is seen in Fig. 3, the
source packet space is filled with cluster centroids quite densely,
and a significant number of clusters are concentrated at the near-
zero inter-packet interval, which is explained by the packet ag-
gregation at the link layer.

To compare the quality of models, the following combina-
tions of datasets were used:

1. External and target traffic. Allows to estimate the im-
pact of using additional data during pre-training.

2. Target traffic. Aims to evaluate model performance
when pre-training on data from the target network/domain.

3.  External traffic. Evaluates applicability of the model
when target domain/network differs from the pre-training one.

Evaluation results

Traffic generation

To check the quality of the proposed model-generator, auto-
regressive training was conducted both on the target and mixed
data scenarios. When training on external data only, set of target
classes is not a complete subset of external classes, so this sce-
nario was excluded from the evaluation to avoid distortions in
the aggregate statistics.

The Markov chain was used as the baseline model, since it is
widely applied for network traffic modeling tasks. In this work,
the chain describes transitions between clusters of packets and,
unlike the transformer model, it was trained on each traffic class
individually and within the target dataset only.

In order to evaluate the quality of the generated traffic, it was
decided to utilize the following parameters: distributions of packet
size, inter-arrival time (IAT) and bitrate for directions from and to
the connection origin [16]. The two-sample Kolmogorov-Smirnov
metric is used to estimate proximity of empirical generated param-
eters distributions to the initial ones from the training set. The met-
ric has values within [0, 1] range, measuring the maximum dis-
tance between two empirical cumulative distributions.

The aggregated by target classes metrics are presented in Fig. 4.
As we see, training the transformer with class-specific first to-
kens indeed allows generating required traffic. In terms of "num-
ber of packets/flow" parameter, the Markov chain underper-
formed the proposed model, since it has no mechanism to control
duration of the generated sequence and depends entirely on the
state transition matrix.

On the other hand, the Markov property makes the training
procedure simple, providing discrete packet cluster distribution
quite close to the original. This positively affected the PS, IAT
and bitrate parameters, which in some cases are marginally better
than ones from a more complex transformer model. In general,
the proposed model shows quality comparable by median values
to individual Markov chains, which can be further improved and
stabilized by adding external traffic.

Traffic classification

When creating a classifier, it is possible to reuse the model
trained for the generation task by replacing the high dimensional
dense output layer with the one having suitable for the classifica-
tion task dimensionality 512 X N,. There are also two different
approaches to training: 1) all model parameters can be updated
(fine-tuning), or 2) only the new output layer can be optimized,
using the pre-trained part as a feature extractor.

The following pre-training scenarios were used for evaluation
of the proposed classifier: 1) no pre-training, 2) with only exter-
nal data, 3) only target and 4) mixture of the datasets.

Given pre-training with flow labels as first tokens, we evalu-
ated two cases for each of the scenarios: 1) masking the first to-
ken, 2) setting a generic first token for all classes that was absent
during pre-training.

Taking into the account multi-class nature of the task, the fol-
lowing evaluation metrics were used:

e Accuracy. It is the ratio of correctly classified flow to
the total number.

e  F1 micro. The harmonic mean of precision and recall,
weighted according to the class share in the dataset.

F1 macro. As above, but the classes are weighted equally.

The evaluation results of the proposed model in different sce-
narios are shown in

Fig. 5.

When optimizing all the model parameters, the pre-training
procedure has a positive impact on the quality of classification,
which practically does not change with the increase of data vol-
ume during pre-training, and the effect of masking the first token
is insignificant. This can be explained by the fact that the model
is fully optimized for the target task, and the pre-training stage is
a way to initialize the model parameters.

The effect of masking the first token is the opposite when the
pre-trained model is used as a feature extractor (i.e., the pre-
trained part is not optimized when training the classifier) for a
linear classifier. Now the masking improves the metrics by about
2%, but compared to the fully optimized models, the best result
drops on average by 4%.

The model pre-trained exclusively on the target data demon-
strates the best result (~0.86), whereas the use of an external da-
taset reduces the quality of the features. In the absence of any
pre-training, the model becomes actually linear and shows ex-
pectedly poor performance.
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We also performed a comparative analysis of the proposed
model (with all parameters updated during training) with the
ensemble algorithm Random Forest, which is widely used in
network traffic classification tasks and shows good results [17].

We use the implementation of the algorithm from the scikit-
learn library [18] with the default configuration and number of
trees equal to 100.

As shown in Fig. 6, Random Forest has slightly inferior per-
formance to transformer without pre-training, and the gap in-
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creases, reaching 4 points on F1 macro when using generative
pre-training.

The pre-training procedure (even without class-specific first
tokens) allows to train effective feature extractors. The latter can
be combined with such non-parametric algorithms as K-NN to
facilitate training the classifiers by several examples (few-shot
learning), or with single-class classification methods to create
detectors of malicious traffic.
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Conclusions

In this paper, we proposed an approach to build neural net-
work models based on the Transformer architecture for network
flow classification and generation tasks, when only packet sizes
and inter-packet intervals are used as features. For conversion of
the initial two-dimensional feature space into one-dimensional
discrete one, we implemented an option based on K-Means clus-
tering. It was shown that it is possible to train a single model for
different traffic classes when the first token of a flow sequence
was class-specific. The quality of generated traffic was on par
with Markov-based approach, where models were trained on
each class separately. Moreover, augmenting training set with
data from another domain had a positive impact on the quality of
generated traffic.

As for the classification task, experiments showed positive
impact of generative pre-training for cases with full and partial
parameter optimization. It was found important to mask the first
token of the input sequence when pre-trained models were used
as feature extractors and trained in class-aware mode. Moreover,
fine-tuned classifiers outperformed Random Forest model by
objective metrics. All in all, the proposed approach allows to
create models for generation and classification of network traffic
with better or comparable to selected traditional methods quality.
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FEHEPATUBHbIE MOAEJSIN HA BA3E HEMPOCETEBOW APXUTEKTYPbl TRANSFORMER
AlA KITIACCUDPUKALIMN U MOLAEJIMPOBAHUA CETEBOIO TPA®UKA
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AHHOTauuA

B cratbe paspaboTaHa reHepaTvBHas MoZesib CETeBbIX MOTOKOB Ha 6a3e HelpoceTeBol apxuTekTypbl Transformer. B kavecTBe BXOAHbIX
MPU3HAKOB )18 MOAENN WUCMOJb30BA/INCh Pa3Mepbl MAKETOB U MeXMaKeTHble MHTEpBasibl B MOTOKe, KOTOpble GbinM MaclITabupoBaHbl U
KIacTep130BaHbl, YTO MO3BONMIO CAeNaTb €AMHOOOPa3HbIMUA BXOAHbIE AaHHble i 3a4a4 KiaccuduKauum u reHepaumu. Mogenb Moxer
oby4atbcAa B AByX pexwuMax: (i) Kak aBTO-perpeccMoHHas Mogenb AnA reHepauun Tpaduka, rae nepebii cuMBON ObyuatoLei
nocnefoBaTeNlbHOCTU KOAUPYET TWUM MOZENUPYEMOro MpoToKosa/mpunoxenus, (i) Kak KnaccugpuKaTop CeTeBblIX MOTOKOB. Pesynbrathl
OLIEHKM Ka4yecTBa CreHepUMpOBaHHOrO TpaduKa Nokasanu, YTO NPeANIOKEHHbIN NOAXOM AEMOHCTPUPYET Ka4eCcTBO CPaBHUMOE C MOZESbIO Ha
ocHoBe MapKoBCKOIi Lienu NepBoro nopsazka, Kotopas oby4anack Ha KaXAOM Kilacce no otaensHocTu. KauecTBo oLieHMBanoch ycpegHeHHoi!
no knaccaM Metpuke Konmoroposa-CMMpHOBa, NMoKasbiBatoLLas pacCTOAHUA MOMyYEHHbIX SMMUPUYECKUX pacrnpeAeneHuil K UCXOAHbIM AnA
cnefyloLmMX NapaMeTpoB: MEXMAKeTHbIA MHTEpBas, pasMepa MakeTa, MPOMYCKHaA CMOCOBHOCTb, YMC/IO MAKETOB B HArMpaBMeHUAX OT U K
MCTOYHMKY. BbiNo Takke NokasaHo, YTo Npu 0byyYeHUK reHepaTopa fobasneHune Tpaduka U3 Apyroro JoMeHa CMOCOBHO ynyuLLUTb UTOFOBOE
KavecTBO. Pe3ynbTaTbl SKCMEPUMEHTOB TakKe MOKa3asM MO3UTUBHBINA SPPEKT UCMONb30BaHUA MPeABapUTeNbHO ObyYeHHOM Moaenu AnA
3afaumn knaccubukaumn. Tak, MpU UCMOSb3OBaHUMM reHepaTopa Kak SKCTPaKTopa MPU3HAKOB /1A JIMHEMHOro anroputMa, KavyecTBo
KnaccuduKaLmm NpubnvKaeTcs K pesynbTaTaM Mofenu Ha ocHoee anroputma CryyaitHbii Jlec, a npu onTMMM3aumMu BCeX MapaMeTpoB
MoZenu, KadecTBo no MeTpuke Fl-Makpo noBbilaerca Ha 5%, onepexas aHcaMb6seBbIf anropuT™ B cpeAHeM Ha 4%.

Knroueeble cnoea: transformer, knaccucpukamop mpagpuka, 2eHepauus mpacpuka, HelipoHHas cemsb, ciy4alieil nec, Mapkoeckas uens,
K-Means, nepeHoc 3HaHul.
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