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Cargo transportation management is impossible without quality planning, which
should be aimed at efficient use of vehicles. The key tasks of transportation man-
agement are cargo routing and distribution of vehicles along routes, provided
that the transportation plan is fulfilled in accordance with the selected optimiza-
tion criteria. The modern development of information and communication tech-
nologies allows us to significantly improve the quality of planning and monitoring
the execution of orders for the transportation of goods by land transport.
Equipping drivers of cargo vehicles with satellite navigation devices and terminals
with Internet access provides a technical opportunity for information interaction
with dispatchers in real time, which determines new requirements for intelligent
transport resource planning systems taking into account the human factor [9].
When creating simulators that involve moving different types of vehicles over
large areas, taking into account the current tactical situation, there are problems
with choosing the optimal path search algorithm, since its use is subject to restric-
tions. There are a large number of algorithms that allow you to determine the
route by which you can get from one point to another. The main problem with
the path search problem is that there is no universal algorithm for solving it. An
overview of algorithms for finding the optimal path for vehicles (the Algorithm A*
and its modifications, in particular Beam search; Iterative deepening; Dynamic
weighing; Bidirectional search; Bandwidth search; Jump Point Search; Theta*). It
is concluded that it is advisable to use different algorithms at the stages of build-
ing a preliminary route variant and optimizing it.
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Introduction

Suboptimal algorithms work on the principle of step-by-step
improvement of the curmrent result. Some heuristic function is
selected. you can use it to select a grid cell at each step, the
distance from which to the end point will have the minimum
value (based on the value of the heuristic function). The
advantage of such algorithms is a smaller number of resources
used compared to algorithms for determining the optimal path.
Many heuristic algorithms allow you to give out the point that is
presumably closest to the end point and the route to it, which is
important for real-time modeling algoritims, when you need to
get some part of it instead of the end path [5].

When creating simulators that involve moving different types
of objects over large territories, taking into account the current
tactical situation, there are problems with choosing the optimal
path search algorithm, since its use is subject to restrictions
caused by the following factors:

* a large amount of data from real maps of the area,
exceeding the amount of RAM, so in most cases it is not possible
to store full information about the intermediate state of the route
in memory;

» complexity of the representation of the territory where
objects are moving, this requires minimizing the number of
requests to determine the patency of a certain section of the path;

* large variation in the complexity of the resulting path: the
optimal solution may be either a straight line or a strongly
broken line [5].

1. Path search algorithms for a vehicle

In this paper, based on a test analysis, it was proposed to
include such path search algorithms in the library:

* Algorithm A*;

* Beam search (beam search);

* [terative deepening (interactive immersion);

* Dynamic weighing (using variable weights);

* Bidirectional search (bidirectional search);

* Bandwidth search (search bandwidth);

* Jump Point Search (the search for the transition point);

* Theta*.

A well-designed route and control automation will
significantly save fuel resources and, consequently, reduce
environmental damage, as well as minimize accidents and other
accidents [7]. More and more different research centers around
the world are developing this direction.

The task of finding a path is reduced to analyzing the
obstacles that may occur on the trajectory of the movement, and
their rational circumvention. For this task, many algorithms have
been developed that are actively used in laying networks,
distributing printed circuit boards, and moving objects in
computer games. Creating simulators that allow you to simulate
the behavior of a vehicle in a changing environment reduces the
need for expensive experiments [7, §].

A big problem is the speed with which traffic calculations
and route selection analysis will be performed, which imposes a
certain limit on the choice of the optimal path search algorithm.
The task of implementing a path search using the minimum
possible amount of memory and calculation time remains
relevant.

Analysis of the direction of movement of the vehicle implies
the presence of data about its location and the surrounding
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environment. The vehicle has a clearly fixed set of options tc
continue driving: increase speed, decrease speed, continuc
driving, reverse, turnright/left.

The analysis of existing algorithms showed that not all of
them are suitable for this type of problem. Real-time systems ar¢
limited in response speed by the acceptable threshold of 100 mv/s
[2]. It is also necessary to take into account the fact that the
vehicle can’t instantly change course. The speed of the "reaction"
to a change in the position of the steering mechanism depends or
the mass of the vehicle, its adhesion to the surface, and othei
factors.

Based on the above, the task of finding a path can be dividec
into 2 stages:

— building an optimal route using an algorithm that satisfies
the necessary restrictions on the use of resources and time;

— post-processing the results of the first stage to get realistic
indicators.

Depending on the choice of algorithm, these two steps can be
combined into one if data optimization is provided during the
path search. The second stage is necessary because the vehicle
cannot change its trajectory instantly. And, therefore, sharp turns
in the route provided by the first stage must be avoided.

2. Description of path search algorithms

Algorithm A*

The algorithm A* is one of the most well-known suboptimal
path search algorithms [3]. It finds the route from the initial
vertex to the final one with the lowest cost. The order of traversal
is determined by the «distance + cost» heuristic function:
fx) = g(x) + h (x). The function A(x) must be a valid heuristic
estimate, that is, it must not overestimate the distance to the
target vertex. The function can represent the distance to the
target in a straight line, since it is the smallest distance betweer
two points [4].

The A* algorithm looks through all the paths from the initial
vertex to the final one step by step until it finds the minimurr
one. Like all informed search algorithms, it first searches the
routes that appear to be most likely leading towards the goal
From the greedy algorithm (the algorithm for finding the shortest
distance by selecting the shortest, not the selected edge, providec
that it does not form a cycle with already selected edges, which
is also the search algorithm best-first match) it is different in tha
when you select a vertex it takes into account, among others, all
passed before her path (component g(x) is the cost of the path
from the initial vertex, and not from the previous one, as in a
greedy algorithm) [5].

The algorithm A* is complete, that is, it always finds
solution if it exists. It is also optimally efficient for a given A(x’
heuristic. This means that any other algorithm explores at least as
many nodes as the A* algorithm (except when there are several
particular solutions with the same heuristics that exactly matck
the cost of the optimal path) [5].

While the A* algorithm is optimal for "randomly" definec
graphs, there is no guarantee that it will do its job better thar
simpler, but also more informed algorithms about the problemr
area. For example, in some maze, you may need to first go in the
direction of the exit, and only then tum back. In this case, the
initial survey of those vertices that are located closer to the exit
(in a straight line) will be a waste of time [5].

e
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Analysis of known modifications of the algorithm.

In cases of routing for real systems, this algorithm has a
number of disadvantages.

First, if the field is large enough to occupy thousands of cells,
there may be a problem with the amount of memory used by lists.

Second, the time to search for a path may exceed the
maximum allowed response time.

Third, the algorithm does not find the shortest path.

To eliminate these shortcomings, the following modifications
of the A* algorithm and other suboptimal search heuristic
algorithms have been developed [6].

Beam search.

In classic A*, all vertices that may be required to perform a
search are saved to the open list. This modification imposes
restrictions on the size of this list. That is, after the open list is
completely filled in to add the next cells to it, the ones that are
least likely to be used are deleted first. Using this modification,
you can avoid problems with the amount of memory used.

In the main A* loop, the OPEN set stores all the nodes that
may need to be searched to find a path. The Beam Search is a
variation of A* that places a limit on the size of the OPEN set. If
the set becomes too large, the node with the worst chances of
giving a good path is dropped. One drawback is that have to keep
your set sorted to do this, which limits the kinds of data
structures you’d choose [4].

Iterative deepening.

Iterative Deepening is an approach used i many Al
algorithms to start with an approximate answer, and then make it
more accurate. The name comes from the search for a decision
tree from game theory, where you need to look at a certain
number of moves ahead. You can try to deepen the tree by
looking ahead more moves. Once your answer doesn’t change or
improve much, you assume that you have a pretty good answer,
and it won’t improve when you try to make it more accurate
again. In IDA*, the «depth» is a cutoff for f values. When the f
value is too large, the node won’t even be considered (i.e., it
won’t be added to the OPEN set). The first time through process
very few nodes. Each subsequent pass, you increase the number
of nodes visit. If find that the path improves, then you continue
to increase the cutoff; otherwise, you can stop.

The idea of this method is to check the next few steps of the
algorithm and, if there is no improvement in the result, stop
searching in this direction. Continuing the search until there is an
improvement is made by the value f, which sets the value of the
dive. Thus, a small number of nodes will be carried out during
the first pass, and their number will increase during subsequent
passes. Therefore, if there are no obstacles or their circumvention
does not exceed the value of the immersion f, the number of cells
involved in the analysis will be less than in the usual algorithm
A*. This modification in certain cases will give a significant gain
in time and the amount of memory used.

Dynamic weighting.

This modification assumes that at the beginning of the search,
you need to reach the area containing the final cell of the path as
quickly as possible. At the end of the search, reaching a specific
cell is more important. The following modification of the weight
function is proposed:

S () =g +wp)* hip) M

where w(n) is the weight assigned to node 7.

When approaching the final cell, the weight decreases. This
reduces the importance of the heuristic and increases the relative
importance of the actual path cost.

Bidirectional search.

Instead of searching from the start to the finish, you can start
two searches in parallelone from start to finish, and one from
finish to start. When they meet, you should have a good path

It’s a good idea that will help in some situations. The idea
behind bidirectional searches is that searching results in a «tree»
that fans out over the map. A big tree is much worse than twc
small trees, so it’s better to have two small search trees.

The front-to-front variation links the two searches together
Instead of choosing the best forward-search node — g(start, x) +
h(x, goal) — or the best backward-search node-g(y, goal) +
h(start, y) — this algorithm chooses a pair of nodes with the best
g(start, x) + h(x, y) + g(y, goal).

The retargeting approach abandons simultaneous searches ir
the forward and backward directions. Instead, it performs a
forward search for a short time, chooses the best forwarc
candidate, and then performs a backward searchi not to the
starting point, but to that candidate. After a while, it chooses a
best backward candidate and performs a forward search from the
best forward candidate to the best backward candidate. This
process continues until the two candidates are the same point.

Bandwidth of search.

There are two properties about Bandwidth Search that some
people may find useful. This variation assumes that h is ar
overestimate, but that it doesn’t overestimate by more than some
number e. If this is the case in your search, then the path you ge
will have a cost that doesn’t exceed the best path’s cost by more
than e. Once again, the better you make your heuristic, the better
your solution will be.

Another property you get is that if you can drop some nodes
in the OPEN set. Whenever /+d is greater then the true cost of
the path (for some d), you can drop any node that has an f value
that’s at least e+d higher than the f value of the best node ir
OPEN. This is a strange property. You have a «band» of gooc
values for f; everything outside this band can be dropped
because there is a guarantee that it will not be onthe best path.

Curiously, you can use different heuristics for the twc
properties, and things still work out. You can use one heuristic tc
guarantee that your path isn’t too bad, and another one tc
determine what to drop in the OPEN set.

Jump Point Search.

Many of the techniques for speeding up A* are really about
reducing the number of nodes. In a square grid with uniform
costs it’s quite a waste to look at all the individual grid spaces
one at a time. One approach is to build a graph of key points
(such as comers) and use that for path finding. However, you
don’t want to precompute a waypoint graph, look at Jump Point
Search, a variant of A* that can skip ahead on square grids
When considering children of the current node for possible
inclusion in the OPEN set, Jump Point Search skips ahead tc
faraway nodes that are visible from the current node.

e ————————
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Each step is more expensive but there are fewer of them, re-
ducing the number of nodes in the OPEN set.

Theta*

The main problem of finding a path is the distance of the se-
lected route from the optimal obstacle avoidance. The difference
between this modification is that Theta* allows you to select any
cell as the «parent» for each cell, unlike A*, where only the
neighboring cell can be the" parent". Using this modification will
allow you to get more realistic indicators of path search, but it
requires more time and additional memory costs [5].

A* will work faster and create better paths if you give a
graph of key points (such as corners) instead of a grid. However,
if you don't want to pre-calculate the angle graph, you can use
Theta*, a variant of A* that works on square grids, to find paths
that don't strictly follow the grid. When building parent pointers,
Theta* will point directly to the ancestor if there is a line of sight
to that node, and skips nodes between them. Unlike path smooth-
ing, which aligns paths after they are found by A*, Theta* can
analyze these paths as part of the A*process. This can result in
shorter paths than post-processing the grid path into a path at any
angle.

Comparison of algorithms

Many algorithms have a similar problem: the paths they pro-
duce look unrealistic. To solve this problem, you must either use
subsequent path optimization, or use an algorithm that already
uses functions that allow youto get a realistic picture [5].

For Fig. 1 shows an example of finding a path between two
points using the A* and Theta* algorithms. The picture shows
that the path obtained using Theta* is shorter and also looks
more realistic. However, the Theta* algorithm is quite heavy due
to the large number of calls to the terrain. If used in the detection
of obstacles on the straight line between two points to apply to
the result of the algorithm A*, you get the path of realism is
close to the result of the algorithm Theta*, while the overhead
will be much smaller [5].

Fig. 1. Comparing path A* (red line) to path Theta* (blue line)
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Conclusion

The main problem with the path search problem is that there
is no universal algorithm for solving it. At the same time, based
on the conducted research, it can be concluded that in the case of
searching for a path on geographical maps, one of the following
methods of solving the problem should be chosen. If you want to
get the most realistic-looking suboptimal path, we recommend
using the Theta* algorithm. When the cost of accessing the ter-
rain is critical, we recommend using the following combination
of algorithms:

» using the A* algorithm to get the route;

» delete points that lie on the same line;

» for each pair of a small set of received key points, we use an
algorithm to check the presence of a straight path. You can apply
this algorithm only to neighboring path segments, splitting them
by inserting dummy points.

In General, you need to build a system of algorithms that
have similar input and output data, which will allow you to ex-
change data at separate steps, combining different approaches to
solving the problem. In addition, the introduction of a hierarchy
will be important: by combining individual terrain areas, you can
first lay paths between large areas, then using other algorithms -
on separate sections, and then by analogy [1].
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AHHOTaUuusA

YnpaeneHve nepeBo3KaMu rpy30B HEBO3MOXHO 6e3 Ka4eCTBEHHOTO MIaHMPOBaHWA, KOTOPOe JOMMKHO ObITb HarnpaBfieHo Ha 3 deKTUBHOE
MCMONb30BaHUE TPAHCMOPTHbIX cpeAcTB. KntouepbiMM 3a7a4aMK yrpaBeHUa NepeBo3kaMu ABNAIOTCA MapLUpPyTU3aLMA FPy3ONepeBo3oK U
pacnpefienieH e TPaHCMOPTHbIX CPEACTB MO MapLUPyTaM MPU YCIIOBUM BbIMOSIHEHWA My1aHa NEePEeBO30K B COOTBETCTBUM C BbIGPaHHbLIM Kpu-
TepueM ontumMmuzaumu. CoBpeMeHHOe pasBuTE UHPOPMALMOHHO-KOMMYHUKALMOHHBIX TEXHONMOrUI MO3BOMAET CYLLECTBEHHO MOBbICUTH
Ka4yecTBO MIaHUPOBaHUA U KOHTPOJIA UCTIONIHEHUA 3aKa30B Ha MEPEeBO3KY rPy30B Has3eMHbIM TpaHcrnopToM. OcHallleHne BoauTeneil rpyso-
BbIX TPAHCMOPTHbIX CPEACTB YCTPOMNCTBAMM CMYTHUKOBOM HaBUraLMK U TEPMUHANIAMM C BbIXOAOM B MHTepHeT obecneunBaeT TeXHUYECKYO
BO3MOXXHOCTb MH(POPMALIMOHHOTO B3aMMOAENCTBUA C JUCTIETHEPAMM B PEXUME peaslbHOro BpEMEHU, YTO Ornpe/enseT HoBble TpeboBaHusA
K MHTENNeKTyasbHbIM CUCTEMaM MIaHUPOBAHUA TPAHCMOPTHBIX PECYpCcoB C y4eToM Yenoseyeckoro ¢akropa [9]. MNpu cozpanum cumyns-
TOPOB, MOApasyMeBalOLMX MNepeMellieHne pasfiiHbIX TUMOB TPAHCMOPTHbIX CPEACTB MO GONbLIMM TEPPUTOPUAM C YYETOM TeKyLLeWn
TaKTUYECKOW OBCTaHOBKM, BO3HMKAOT NPpObeMbl ¢ BbIGOPOM afroputMa Noucka ONTUMAbHOrO MyTH, TaK Kak Ha ero UCrosib3oBaHue Ha-
Knagpipatotcsa orpaHuyenms. CylllecTByeT 60sblloe KONMMYECTBO alIrOPUTMOB, MO3BONAIOLLIMX OMPEAENUTb MapLLPYT, MO KOTOPOMY MOXHO
nonacTb M3 OJHOW TOYKM B Apyryto. [MaBHas mpob6nema 3ajayM Moucka MyTU 3aK/OYAeTcs B TOM, YTO He CyLUecTByeT KaKoro-nmbo
YHUBEpCanbHOro anroputMa ee pelueHus. [lpoeeseH 0o630p anropuTMOB MOWMCKA OMTUMAILHOTO MyTU AJIA TPAHCMOPTHBIX CPeACTB
(Anroputv A* 1 ero Moandukaumm, B YactHocT Beam search (mouck no nyuy); Iterative deepening (utepatusHoe norpysxenue); Dynamic
weighting (Mcnonb3oBaHuWe nepeMeHHbIX BecoB); Bidirectional search (AaByHampaBneHHbiii nouck); Bandwidth search (MMowuck nonocsi
nponyckanus); Jump Point Search (nomck Touku nepexoga); Theta*). Caenan BbiBog O LenecoobpasHOCTU UCMONb3OBaHUS Pa3NUYHbIX
a/IrOPUTMOB Ha 3Tarnax NOCTPOEHWUA MPeABapUTENIbHOIO Bap1aHTa MapLUpyTa U €ro ONTUMU3ALMK.

Knioqeebie cnoea: cy6onmumarnsHbie anzopummei, anzopumm A%, anzopumm Theta*, nnaHuposanue mapwpyma, mpaxcnopmroe cpedcmeo.
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UHdopmauma o6 aBTopax:

Maxoeukoea FOnua BukmopoeHna, Cubupckuli 20cydapcmeeHHblii yHUeepcumem Hayku u mexHosnoaull umeHu akademuka M.®. Pewemreea, acnupaHm,
2 KpacHospck, Poccus

Muponernko Ceemnana HukonaeeHna, Cubupckuil 20cydapcmeeHHbili yHU8epcumem HayKu u mexHosiozuli umeHu akademuka M.@. Pewemnreea, acnupanm,
2 KpacHospck, Poccus

Heeamkoe AnekcaHdp Banepbeeuy, Cubupckuil 20cydapcmeeHHbIl yHUepcumem Hayku u mexHonoauil umeHu akademuxka M.®. Pewemnesa, acnupanm,
2. KpacHospck, Poccus

LWamnuukuii Apocnae Meanoesu4, Cubupckuli 20cydapcmeeHHblii yHU8EpcUMem HAyKu u mexHonoauil umeHu akademuka M.®D. Pewemneea, K.m.H., doueHm
kacpedpsi uHpopmauuoHHo-ynpasnarowux cucmem, 2 KpacHospck, Poccus
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