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It is natural to consider the rolling dynamics of an auto-
mobile wheel when it interacts with the road surface. At
the same time the most difficult and important task is to
determine the force components applied to the wheel,
such as the friction driving force, the drag force, the
rolling and spinning resistance moments that occur in the
contact spot from the side of the roadbed. The paper
investigates the aspects of dry friction, rolling and sliding
of an automobile wheel presented as a deformable body.
In this case, it is of great importance to take into account
the treads, which is reflected in the tire models. An
important aspect is the study of the laws of distribution of
normal stresses in the contact area. To solve practical
issues of road transport, approaches based on the Magic
Formula of Pacejka and calculation methods based on
brush, ribbon and string models, in particular, the Brush
model of Svendenius, are highlighted. The conditions of
its applicability are obtained and justified.
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Introduction 

When modeling the rolling dynamics of a wheel, the most 
difficult and important task is to determine the force components 
applied to the wheel, such as: the driving friction force, the re-
sistance force, the rolling and spinning resistance moments that 
occur in the contact spot from the side of the roadbed (for an 
automobile wheel) or from the side of the rail (if we are talking 
about a railway wheel). For example, it is known that the friction 
force (clutch) applied to the driving wheel of the vehicle (a mo-
ment from the engine is applied to it) is always directed forward 
in the direction of movement, and a similar force applied to the 
driven wheel is directed (as a rule) backwards and slows down 
the movement of the vehicle.  

It is clear that the model of the point contact of the wheel 
with the road is overly simplified and does not correspond to the 
real practical tasks of studying the dynamics of motor vehicles. 
With stationary and rectilinear motion, such a model is quite 
acceptable. The first results in this direction in 1779 were ob-
tained by Sh. Coulon that investigated rolling friction (Figure 1 
shows a diagram of the Coulon’s experiment). 

Figure 1. Coulon’s scheme of rolling friction experience 

Closer to reality is the model of a deformable wheel, which 
also contacts the deformable road in a certain area (multipoint 
contact). The O. Reynolds rod model is known [4], in which the 
wheel is represented as a set of elastic rods emanating from the 
common center of the wheel or thin disks on a single shaft. At 
any given time, the wheel contacts the road with several rods, 
and some rods slip while doing so, and some remain in constant 
contact. A similar effect occurs for the disk model. 

For such models, O. Reynolds in 1876 drew attention to the 
effect of longitudinal pseudo-sliding, which consisted in the fact 
that the path traveled by the center of the wheel of the vehicle 
(locomotive) DID NOT COINCIDE with the product of the angle 
of rotation of the wheel by its rolling radius. Further, in 1925, 
motorists (Brulier) discovered the phenomenon of lateral pseudo-
sliding (withdrawal), which consisted in changing the trajectory 
of the car under the action of lateral forces (for curved move-
ments) in comparison with what should have been for a car with 
absolutely solid wheels. Finally, the rolling theory, which takes 
into account the effects of longitudinal and lateral pseudo-sliding 
in the case of a railway wheel, was developed in 1926-28 by 
F.Carter.  

Thus, when the deformable wheel is rolling, coupling zones 
and sliding zones appear in its contact area. Similar (flat) models 
for continuous (distributed) contact were considered in the works 
of A. Y. Ishlinskiy. At the same time, the classical 
Coulon’smodel was used to calculate the friction force (the main 

vector of tangential forces applied to the wheel), which was de-
termined by the distribution of normal stresses in the contact 
area. Calculating the moments of distributed normal and tangen-
tial forces, A. Yu. Ishlinsky explained (both qualitatively and 
quantitatively) the origin of the moment of friction of rolling 
resistance. The main result of these studies is as follows. The 
rolling friction moment is determined by the distribution of nor-
mal reactions in the wheel contact area, and also depends on the 
accepted model for friction forces. 

Further development of the dry friction model (for the wheel, 
in particular) was obtained in the works of N. E. Zhukovsky, M. 
A. Levin, N. A. Fufaev, Kontensu and V. F. Zhuravlev. In these 
works, dry friction models were developed based on the principle 
of summation (integration) of elementary friction forces, as well 
as their elementary moments. In addition, it is also necessary to 
consider various (theoretically and practically acceptable) laws 
of distribution of normal stresses in the contact area. It is these 
stresses that determine the elementary friction force of the Cou-
lomb. In turn, the law of distribution of normal stresses is deter-
mined by the dynamics of vehicle movement (for example, this 
law depends on whether the vehicle is moving with acceleration 
or not). Thus, it turns out that the driving force of friction de-
pends on the way the vehicle moves, and this dependence is mu-
tual. 

In the tasks of describing the dynamics of ground vehicles, 
great importance is given to non-holonomic dynamic systems. 
By the term "non-holonomic systems" we mean a class of non-
linear systems that cannot be coordinated by continuous time-
invariant feedback, i.e., there are times when certain constraints 
are imposed on the state of the system (non-holonomic connec-
tions). These systems are controllable, but they cannot move in 
some directions instantly.  

They belong to the class of nonlinear differential systems 
with non-integrable constraints on motion. Non-holonomic con-
trol systems resulting from the formalization of non-holonomic 
systems include control inputs, are nonlinear control tasks requir-
ing nonlinear tuning. Non-holonomic control systems are being 
actively studied in connection with the development of robots, 
including mobile robots, wheeled vehicles and space robotics, 
etc. In the case of wheeled vehicles, kinematics and dynamics 
can be modeled based on the assumption that the wheels roll 
perfectly (Fig. 2). 

Figure 2. The contact spot of the tire with the support surface 
without load and under load 
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Typical limitations of wheeled vehicles are rolling. contact, 
such as rolling wheels on the ground without slipping, or sliding 
contact, such as skates sliding. 

1. The spinning top model

For the most part, the spinning top was driven into rotation 
using a thin string previously wound on its shaft. Quickly pulling 
the string from the shaft of the spinning top, the latter was in-
formed of rotation around the axis AA, 1 which lasted until the 
friction forces acting at the point 

About the supports of the spinning top on any base, did not 
stop its movement. Many scientists of the world have taken up 
the study of the laws of motion of the spinning top. The famous 
English scientist I. Newton (1642-1727) and a member of the 
Russian Academy of Sciences L. Euler (1707-1783) also worked 
on this task.  Euler in 1765 for the first time published the theory 
of motion of a solid body near a fixed point of its support and 
thereby created a theoretical basis for further in-depth study of 
the laws of motion of the spinning top. The works of French sci-
entists J. Lagrange (1736-1813) and L. Poinsot (1777-1859) 
greatly contributed to the further study and development of 
methods for the practical use of the properties of a rapidly rotat-
ing spinning top. 

In 1886, the French Admiral Fleurieu proposed a new device 
–  sextant – for measuring the geographical latitude of the ship's
location during a storm, the basis of which was a rapidly rotating 
spinning top. The spinning top itself was made in the form of a 
cylindrical body B (Fig. 3), supported by a pointed hairpin at 
point N. During operation, the device was held by the handle R 
in an upright position. With the help of a hand pump, com-
pressed air was pumped into it through the hose M, which hit the 
side surface of the spinning top with directed jets and caused it to 
rotate around the AAX axis. With the weight of the spinning top 
at 175 g, it was possible to inform it of rotation at a speed of 
about 3000 rpm. To ensure the rotation of the spinning top invar-
iably in the horizontal plane, its center of gravity was positioned 
approximately 1 mm below the fulcrum. The spinning top, even 
when the handle deviated from the vertical position, continued to 
remain in the horizontal plane, providing an artificial horizon on 
the rocking ship. 

Figure 3. The spinning top model 

For the convenience of fixing the horizon plane on the upper 
end surface of the spinning top, two plano-convex lenses C were 
fixed, on the flat surfaces of which thin strokes were applied, 
located parallel to the end surface of the spinning top. The dis-
tance between the lenses C corresponded to the focal length, as a 
result of which, when the spinning top was rotated, the strokes 
applied to the lenses for the eye observing through the eyepiece 
D of the device merged into one line. This feature fixed the posi-
tion of the horizon plane, with respect to which the angle was 
measured, and the height of the luminary L, similar to how it was 
described above (Fig. 3). 

For simultaneous observation of the artificial horizon line and 
the luminary, two mirrors A and K were installed in the device. 
To the turns of the mirror K, the beam coming from the luminary 
L was combined with the line of the artificial horizon. In this 
case, the magnitude of the angle a was determined by the angle 
of rotation of the mirror K. This device is considered to be the 
first invention in which a spinning top was used, in its shape and 
device not fundamentally different from ordinary spinning tops, 
which were widely used in everyday life. 

Imagine a spinning top, for example, a thin brass disc (gear) 
mounted on a thin steel axle. The dynamics of such a spinning 
top generates the occurrence of precession, gyroscopic moment 
and other characteristics of the movement of the spinning top. 

We introduce a unit vector , showing the direction of the ax-
is of a symmetrical spinning top in space, i.e., coming from the 
origin of the coordinate system (from the center of mass) and 
directed along the axis of the spinning top (Fig. 4). 

Figure 4. Geometric interpretation of the free precession 
of a symmetric spinning top 

Let  – the moment of the pulse, and  – angular velocity 
vector. At each moment of time, all three vectors  and  they 
lie in the same plane, and when the body moves, their relative 
position remains unchanged. In the absence of moments of ex-
ternal forces, a plane containing vectors   , rotates uni-
formly around the direction of the vector unchanged in space . 
In fact, the speed  the point of the spinning top axis that coin-
cides with the end of the vector n, expressed in terms of angular 
velocity by the formula .  
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This means that at any moment the end of the vector n it 
moves perpendicular to the plane under consideration, dragging 
it along with the vectors lying in it  and . Thus, the entire 
plane rotates uniformly around , and the vectors lying in it  and 

 synchronously describe cones in space, the vertices of which 
lie at the origin. About this behavior of vectors  and  they say 
they commit around  regular precession. It can be shown that 
the angular velocity of this precession  proportional to the mo-
ment of the pulse  and is inversely proportional to the central 
moment of inertia of the spinning top  relative to the trans-
verse axis: . Such a free precession of the axis of the 
spinning top, which occurs in the absence of external moments 
when the angular velocity does not coincide with the axis of the 
spinning top, is also called nutation. Note that the axis of the 
spinning top retains its direction in space (does not precess) if, 
during free rotation, the angular velocity is directed along the 
axis of the spinning top, i.e., in such cases nutation does not oc-
cur. 

2. From gyroscope to multicomponent dry friction

As a result of experimental observations of the behavior of 
the Fleurieu gyroscope, which Contence conducted, he began his 
research, as he received evidence of unsatisfactory compliance 
with the theory. Theoretical predictions initially followed from 
the ideas about the interaction of the gyroscope support with the 
base axle either in the form of one-dimensional dry friction, or in 
the form of no slippage at the point of contact (non-holonomic 
formulation), or in the form of purely viscous friction. 

Contensu noted [15] that the use of Coulomb's law to de-
scribe friction in the case of a combination of simple movements 
(sliding and rolling, sliding and twisting) should not be true. This 
is evidenced by simple and well-known experiments, for exam-
ple, rotation around the vertical of a car wheel when rolling or 
the sliding of a polisher brush when it rotates. Although the con-
tact zone of the rubbing bodies in the case of the Fleurieu gyro-
scope was negligible and many simply considered the contact 
point, Contensu called this zone a circle and considered Cou-
lomb's law in differential form inside this circle so. 

Figure 5. Rotating rod 

We will consider a vertically rotating rod resting with a 
spherical end on a flat support moving at a constant speed 
(Fig. 5.). The contact area is a circle of radius , in which the 
normal voltage depends only on the distance  to the center of 
the circle:  Relative sliding is carried out at a speed of v, the 
angular velocity of the spin is indicated by  (Fig. 6). 

Relative sliding speed  at a point having polar coordinates 
in the contact area  it is expressed as follows: 

v = (v - sin , cos ). 

The differential of the friction force directed against the rela-
tive velocity at this point, in accordance with Coulomb's law, has 
the form: 

ƒ . 

Figure 6. Contact area 

The moment of this elementary force: 

ƒ  

As a result, for the moment and force we get the following 
expressions: 

ƒ , 

F ƒ  

Note that due to the symmetry, the expressions for the force 
relative to the x-axis of its component along the y-axis are zero. 

Let 's introduce the notation . Given these 
notations, we rewrite the expressions for the modulus of the 
moment and the modulus of the nonzero component of the force: 

ƒ , 

ƒ .  

Let us first consider as an example a point contact by Hertz. 
We assume that both contacting surfaces are locally spherical, 
then: 

 .

From the presented relations it follows that when 0 the 
moment of friction also tends to zero, and for this reason it was 
not even considered. As for the friction force, it has the form: 

ƒ
ƒ
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Argument  has the order of smallness  at the end . 
In a small area  this function can be approximated by a 
tangent at zero, and outside of it by a horizontal line correspond-
ing to the usual Coulon’s law. 

The obtained ratio allows us to draw a fundamentally im-
portant conclusion: in the case of point contact, the friction force 
does not have the form of the original Coulomb law, in particu-
lar, it is equal to zero identically by : , . 
That is, there is no resting friction force, if only the twisting 
takes place, no matter how small it may be. So, references to the 
law of dry friction to justify the absence of slippage when using a 
non-holonomic formulation of the problem of rolling some bod-
ies by others, as is often done, are inappropriate. 

The dependence of the friction force at a point on the spin-
ning speed is very significant and there is no way to neglect it. In 
cases where researchers in problems with combined friction ac-
cept the condition of no slippage, they must either indicate by 
what physical forces it can be provided, or, realizing such a con-
dition is approximate, talk about evaluating the accuracy of such 
an approximation. The term "absolutely rough surface" cannot be 
based on the idea of dry friction. 

3. Rolling theory approaches

In addition to sliding friction, Sh. Coulon studied rolling fric-
tion, for which he created an experimental setup (Fig. 7) consist-
ing of two parallel wooden bars on which a cylindrical wooden 
roller rolled. A moment proportional to the difference in the 
weights of the loads fixed at opposite ends of the rope was ap-
plied to the roller by means of a rope thrown over it. The results 
of experiments on this installation Coulomb expressed the widely 
used and currently used formula for the force overcoming the 
rolling resistance of the roller: 

where Q – the weight of the roller together with the loads, 
r – radius of the rink, k – the proportionality coefficient having 
the dimension of length. 

Figure 7. Coulon’s experimental setup 

Similarly, to the sliding friction law, in a more detailed entry, 
the rolling friction force has the form: 

where  represents the angular velocity of the roller. If there is 
no rolling, then the rolling force can take any value in the speci-
fied interval. 

Rolling friction is a more complex phenomenon than sliding 
friction. In the case of sliding, the contact area is stationary rela-
tive to the sliding body, in the case of rolling, this area is mova-
ble both relative to the body and relative to the stationary sur-
face. In addition, rolling cannot occur without sliding friction. 

Let the center of the rink be carried away by force T, attached 
to its center, moving at a constant speed V (Fig. 8). It is required 
to find the law of changing the angle of rotation of the roller. 

Figure 8. The scheme of the skating rink movement 

Let 's write down the equations of motion of the rink 

(We assume for certainty that 

If the velocity of the center of mass is constant 
that  and the second equation of the written 

system takes the form: 

. 

If  (sliding friction prevails over rolling friction), then 
the rotation of the roller accelerates until the slipping of the roller 
relative to the base stops. The sliding friction force becomes sig-
nificant at the point of rupture: 

If   (rolling friction prevails over sliding friction), then 
the rotation of the roller slows down, the limiting movement of 
the roller is translational, the sliding speed of the roller relative to 
the base is equal to the speed of the center of the rink. The roll-
ing friction moment becomes significant at the point of rupture: 

. 
If , then the angular velocity does not change its mag-

nitude, both rolling and sliding take place in stationary mode. 
It is known that mankind invented the wheel as a means of 

overcoming dry friction. In the case of rolling an absolutely rigid 
wheel on an absolutely rigid horizontal surface, there is really no 
friction, i.e., slippage. In reality, energy losses during rolling 
remain, although they become significantly less. 

A significant contribution was made to the construction of a 
qualitative rolling theory in 1876. Osborne Reynolds, [4], who 
discovered the following experimental fact. It consists in. That 
the area of contact of elastic bodies during rolling is divided into 
areas of sliding (slipping) and adhesion (setting), Figure 9. At the 
same time, with an increase in the moving or braking moment, 
the area of the slip zone increases, and the area of the adhesion 
zone decreases. 
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Figure 9. Diagram of zones in the tire contact spot with the road 

This happens until the area of the coupling zone becomes ze-
ro and a complete slip occurs. The zones are characterized as 
follows. In the slip zone, the points of contact between the 
wheels and the road move relative to each other, and in the 
clutch zone these points are stationary relative to each other and 
the wheel is rolling. 

4. Classical examples are Chaplygin's sleigh and the
Appel mechanism 

In [5], the problem of controlling the movement of three-
wheeled robots with two driving and passive piano wheels is 
considered.  The generated model is reduced to a system: 

, 

.      (1) 

Here are the parameters ,  determined by the in-
ertial mass characteristics of the system, ,  set the position of 
the center of mass of the body relative to the wheels,  – 
normalized viscous friction in wheel axles, –– pa-
rameter that determines the asymmetry of friction, –– co rol
of the longitudinal speed and rotation of the housing. It is as-
sumed , since the reverse situation is equivalent to chang-
ing the sign of the speed. 

The behavior of the system is investigated in the case when 
the control signals  permanent. Then the system (1) is auton-
omous and the use of the phase plane  it is very convenient 
for studying movements at different parameter values. 

Simple cases. At certain values of the parameters, equations 
(1) turn into equations of nonholonomic systems considered by 
the classics in the works.  

Chaplygin's Sleigh. When  system 
(1) takes the form: 

,      (2) 

coincides with the system obtained and studied by Chaplygin 
[11] and Karateodori [12], who studied the inertia motion along 
the horizontal plane of the "Chaplygin sleigh – a nonholonomic 
mechanical system representing a solid body resting on the plane 
with two "slippery" points and the point of the skate blade. The 

position of the contact point of the skate corresponds to the mid-
dle of the segment connecting the attachment points of the 
wheels of the mobile robot. Stationary points
systems (2) fill the entire ordinate axis. It is obvious that the sta-
tionary points correspond to the robot's movements at a constant 
speed along straight line. 

System (2) has an integral: 
, 

which defines a family of ellipses –– pha  trajectories
on the plane . When  the image point moves along a 
phase trajectory from bottom to top; hence, stationary points 

unstable, –– able. Thus, the movements of the
robot with the center of mass of the body behind the wheels are 
unstable, in front - stable. The intersection of the phase trajectory 
of the abscissa axis corresponds to the point of return of the tra-
jectory of the robot. 

Appeal Mechanism. When  system (1) 
takes the form: 

.    (3) 

These equations coincide with the equations obtained and 
studied by Appel [13] and later by Hamel [14] for a non-
holonomic mechanical system, which differs from Chaplygin's 
sleigh in that it has a wheel instead of a skate, which is affected 
by a constant torque created by means of a load on a thread 
thrown over a block mounted on the body and wound on a pulley 
coaxial with the wheel. Here are some results of these works. 
If , then there are no stationary points; if , then we 
have two stationary points: 

.     (4) 

Autonomous equations (3), excluding time, can be reduced to 
the form 

.       (5) 

Equation (5) obviously has an integral 

, 

where  – an arbitrary constant. Phase trajectories for the case 
 are shown in Fig. 10. The stationary points in this case 

are the centers. It can be seen that stationary motion (4) – the 
rotation of the body at a constant speed relative to a non-moving 
point – is realized under the condition that the moment  on the 
wheel balances the centrifugal force 

Figure 10. Phase trajectories of the "Appel Mechanism" 
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5. Connection of dry friction, rolling and contact spots

The forces acting on the tires of a ground vehicle determine 
the trajectory or path of the vehicle. These forces are limited by 
the friction of the contact spot between the tire and the road sur-
face.  

The ability to obtain information about the value of the coef-
ficient of friction before using maximum tire forces can be a de-
termining factor in preventing an accident or in significantly mit-
igating the severity of the situation. It is known that in practice 
all chassis safety is provided by systems such as electronic stabil-
ity control and anti-lock braking system and more modern sys-
tems that mitigate the consequences of collisions by braking. The 
efficiency of such systems can be significantly improved if in-
formation about the current level of friction is sent to the control 
systems. 

Tire modeling is an important step in the process of under-
standing and evaluating the friction and force components acting 
in the contact spot between the tire and the road.  Research on 
tire characteristics and modeling of their dynamics has been ac-
tively conducted over the past 70 years. The level of detail in 
these models ranges from basic first-order local effects at the 
macroscopic scale to detailed high-level models at the micro-
scopic scale, for example, described by finite element methods. 

The classical representation of the dynamics of the wheel of a 
ground vehicle in modern engineering is a tire model that takes 
into account the phenomenon of force sliding in the contact spot 
on a macroscopic scale. Practical applications of complex theo-
retical models of mechanics require simplified, basic relations, so 
it is sufficient to consider stationary steady-state tire models 
where the parameters take constant values. Then the onboard 
sensors will not display fast stochastic and poorly controlled sig-
nals taken from the bus zones.  

Another aspect related to the choice of a model is its models 
and, in particular, complexity in terms of the number of parame-
ters. It is well known that excessive parameterization in models 
leads to a lack of convergence of model parameters or to incor-
rect modeling results. Due to the complexity of interaction and 
the presence of random factors of road infrastructure, this fact is 
especially evident in the problems of estimating friction parame-
ters in real automobile traffic. Therefore, models with a minimal 
set of parameters describing the dynamics of the wheel have a 
high priority for technical applications. 

Most adequate tire models are tied to the properties of power 
components that provide interaction with sliding and rolling 
forces. It is worth noting the dependence discovered by Bakker 
[9] and then developed by Pacejka [8], which is now commonly 
called the "magic formula". 

The general form of the Magic Formula, given by Pacejka 
[8], [9], is:  

, 

where B, C, D and E represent fitting constants and y is a force 
or moment resulting from a slip parameter x. The formula may 
be translated away from the origin of the x–y axes. The Magic 
Model became the basis for many variants. 

Figure 11. Pacejka’s graph of function dependence 
from Magic Formula 

An interesting application of this formula for the design of 
multi-wheeled mobile robots is proposed in [10]. 

The most productive for applications is the brush, brush 
model (Brush model), the advantages of which are that it allows 
you to describe the evolution of force components in the contact 
spot. 

Swedish researchers, namely the well-known scientific group 
of Svendenius, [3], proposed a simple version of the model of a 
clean sliding brush (Brush model). This model has been con-
firmed by experiments on real data, and allows it to be adapted to 
different road surfaces and different types of tires. 

The advantages of the brush model are that only some simple 
assumptions about the properties of the tire, the contact spot and 
the characteristics of the road surface are enough to formalize it. 

We formulate standard assumptions that allow us to obtain a 
model that is completely determined by two parameters. The 
basic assumption is that the tire can be divided into an infinite 
number of bristles that deflect when in contact with the road sur-
face. Each bristle stretches in the transverse direction, is consid-
ered to have an elastic reaction and deforms independently of 
other bristles. The spot of contact with the bristles is additionally 
illustrated in figure 12. 

In addition, standard assumptions are introduced. 
1. The vertical distribution of tire pressure is a parabolic

function. 
2. The friction force between the tire and the road is de-

scribed by Coulomb friction, i.e., there is a pre-shear effect, etc.  
3. The friction force is considered isotropic, i.e., the fric-

tion force is limited to a circle in the plane of the road. 
4. The influence of the camber angle is not taken into ac-

count. 
5. It is assumed that the tire frame is rigid, and it is as-

sumed that all flexible movements occur in the bristle in the con-
tact spot. 

The road surface is considered flat and solid, i.e., no part of 
the road surface is moved or transported in a contact spot, for 
example, on snow-covered roads or gravel roads. 
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Figure 12. Scheme of brush model bristles in the contact spot 

Note that Assumption 1 is standard, and the arguments in fa-
vor of this assumption are confirmed by experimental data. 
Moreover, it is valid both for the case of pure longitudinal sliding 
and for the case of pure lateral sliding.  

Assumption 2 reduces the number of parameters, so that only 
one parameter related to friction is sufficient necessary. 

Assumption 3 allows us to characterize the tire friction in both 
the longitudinal and transverse directions, and with one parameter. 
This is also a simplification of the tire model of a real ground ve-
hicle, which should not have a frame and the same thread pattern 
in the longitudinal and transverse directions. The assumption made 
is a compromise between simplicity and accuracy. 

Assumption 4 does not take into account the camber angle is 
also introduced to simplify the model, it is assumed that the 
camber angle is 0. If we do not make this assumption, we will 
also get an additional parameter.  

Assumption 5 is the standard assumption for the brush ap-
proach and has higher confidence in the longitudinal direction. 
The assumption is not to include the rigidity of the frame also to 
minimize the number of parameters. 

Assumption 6 on the road surface makes it possible to simpli-
fy the description of the interaction of the tire with the road with 
fewer parameters. 

Conclusion 

In this paper, we present an approach that allows us to ana-
lyze the processes of wheel dynamics during the movement of a 
ground vehicle. Comparisons of various elastic wheel models are 
carried out within the framework of the theory of multicompo-

nent dry friction. The ways of theory development for practical 
engineering applications are outlined. 
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Аннотация
Динамику качения автомобильного колеса естественно рассматривать при его взаимодействии с дорожным покрытием.   При этом  
наиболее трудной и важной задачей является определение силовых компонентов, приложенных к колесу, таких как движущей
силы трения, силы сопротивления, моментов сопротивления качению и верчению, которые возникают в пятне контакта со стороны
полотна дороги. В работе исследованы аспекты сухого трения, качения и скольжения автомобильного колеса, представленного
как деформируемое тело. В этом случае большое значение имеет учет протекторов, что отражается в моделях шин. Важным
аспектом является изучение законов распределения нормальных напряжений в области контакта. Для решения практических
вопросов автомобильного транспорта выделены подходы, основанные на Magic Formula Пасейки и методы расчетов, основанные
на щеточных, ленточных и струнных моделях, в частности, Brush-модель Свендениуса. Получены и обоснованы условия ее
применимости.

Ключевые слова: Модель шины, модель щетки, сухое трение, пятно контакта.
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