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Virtual machine migration is widely used in cloud data centers to scale and
maintain the stability of cloud services. However, the performance metrics of
virtual machine (VM) applications during migration that are set in the Service
Level Agreements may deteriorate. Before starting a migration, it is neces-
sary to evaluate the migration characteristics that affect the quality of serv-
ice. These characteristics are the total migration time and virtual machine
downtime, which are random variables that depend on a variety of factors.
The prediction is based on the VM monitoring data. In this paper, we select
the most suitable factors for forecasting five types of migrations: precopy
migration, postcopy migration, and modification of precopy migration such
as CPU throttling, data compression, and delta compression of modified
memory pages. To do this, we analyzed a dataset that includes data on five
types of migrations, approximately 8000 records of each type. Using correla-
tion analysis, the factors that mostly affect the total migration time and the
VM downtime are chosen. These characteristics are predicted using machine
learning methods such as linear regression and the support vector machine.
It is shown that the number of factors can be reduced almost twice with the
same quality of the forecast. In general, linear regression provides relatively
high accuracy in predicting the total migration time and the duration of vir-
tual machine downtime. At the same time, the observed nonlinearity in the
correlations shows that it is advisable to use the support vector machine to
improve the quality of the forecast.
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1. Introduction

Cloud computing has been developing rapidly in recent years.
The availability of the Internet, as well as smartphones, comput-
ers and tablets, has led to the popularity of IT services, such as
social networks, file sharing services, Internet of Things services,
file storage, e-commerce, etc., which has affected the growth of
Internet traffic in the world. According to Cisco forecasts, traffic
growth will continue and grow from 9.1 zettabytes (ZB) in 2017
to 20.6 ZB in 2021 [1]. Processing and storing "big data" re-
quires the construction of new data centers (DC), as well as the
search for the most effective resource management algorithms.

The basis of cloud technologies is virtualization technologies.
Between the server hardware and the operating system with ap-
plications, there is an additional software layer — a hypervisor,
the purpose of which is to create isolated virtual machines on a
physical server. Virtualization provide greater flexibility in man-
aging computing resources. If necessary, administrators can add
and reduce resources, i.e. apply horizontal or vertical scaling,
and move virtual machines from one physical server to another,
including to another DC. This process is called VM migration. If
the migration occurs without stopping the service, then this mi-
gration is called live or dynamic. The use of live migration is
preferred in cloud data centers, which are subject to strict re-
quirements for quality of service indicators set in service level
agreements (SLAS).

Migration is used in data centers to consolidate virtual ma-
chines on fewer physical servers, balance the load, and reduce
server overheating [2, 3].

Although migration can be performed without stopping the
VM, performance degradation of the VMs and short-term down-
time are unavoidable. In [4], it was shown that the downtime can
vary significantly from 60 ms to 3 seconds, depending on the
size of the virtual machine's RAM, how the application uses the
memory, and available network bandwidth. Therefore, before
migration, it is necessary to predict migration characteristics
such as the total migration time VM downtime, which directly
affect the quality of service indicators set in SLA.

This paper analyzes the existing work on predicting the char-
acteristics of live migration, in particular, total migration time
and VM downtime. To do this, we analyzed a data set that in-
cludes data on five types of migrations, approximately 8000 rec-
ords of each type. Using correlation analysis, the factors that
most affect total migration time VM downtime are selected. It is
shown that the number of factors for predicting these characteris-
tics can be reduced almost twice with the same quality of the
forecast, which will significantly reduce the complexity of col-
lecting initial data.

This paper is organized as follows. Section 2 discusses the
types of VM live migration, such as pre-copy and post-copy mi-
grations and their modifications. Section 3 describes the charac-
teristics of live migration that affect the quality of the cloud ser-
vice. Section 4 analyzes the live VM migration dataset. The cor-
relation analysis of factors is carried out and the most significant
factors influencing the total migration time and VM downtime
are selected. Section 5 presents the results of experiments on
forecasting by linear regression and the support vector machine
(SVM) with a smaller number of factors.
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2. Types of live migrations of virtual machines

Currently, two main types of live VM migrations have been
developed, which are used in various hypervisors:

e  Pre-copy migration [5]: This approach is used in most
hypervisors, such as VMware, Xen, and KVM. The migration
includes several stages, as shown in Fig. 1. During this migra-
tion, the RAM of the VM is copied to the destination VM, while
the source VM does not stop: changes to memory pages continue
to occur on it. The new VM will not start working until all
memory pages are copied. If the speed of modification of the
memory pages on the source VM is higher than the available
network bandwidth, then the process of copying the modified
memory pages will never converge. Therefore, a threshold for
the maximum number of pre-copying iterations is used. If it is
reached, the VM stops, the remaining memory pages are copied
to the destination VM, and then the machine resumes working on
the new host. The migration algorithm shows that the number of
iterative copy steps is random and depends mostly on the net-
work bandwidth and the speed of memory page modification.
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Figure 1. Stages of precopy migration

e  Post-copy migration differs from pre-copy migration in
that the VM on the destination host is almost immediately acti-
vated: first, the minimum necessary data is transmitted to start
the virtual machine (processor registers, |1 / O device status, etc.),
after which the virtual machine is immediately restarted on the
destination server, while copying all memory pages occurs in the
background. In [6], we consider four ways to extract memory
pages from the source server. The easiest way is to copy on de-
mand. Accessing pages that have not yet been copied triggers a
memory error on the VM, processing which retrieves the desired
page on demand. These page errors can lead to high VM CPU
usage during the resume phase. Post-copy migration is attractive
because it has a short and constant downtime and transfers each
memory page only once. However, performance degradation
during the resume phase limits its use in an environment with
strict SLA agreements. The migration steps are shown in Fig. 2.

Since these two types of migration have their own advantages
and disadvantages, many papers have recently appeared that con-
sider hybrid migrations [7-10].
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Figure 2. Stages of postcopy migration

To improve various characteristics of migration, such as total
migration time, VM downtime, the required network bandwidth,
in a number of works, it is proposed to use additional tools:

e  Processor throttling (THR) [11] is a method of deliber-
ate reducing the allocated CPU time to a VM to slow down the
speed of memory page modification and thus ensure the conver-
gence of the iterative page copying process.

e  Delta compression of memory pages (DLTC) [12] - del-
ta compression is applied to partially modified memory pages.
This method may require a significant amount of additional
memory to store intermediate results of calculations.

e  Data Compression Optimization (DTC) [13] compresses
pages before transmission to reduce the amount of data being
transmitted. This method requires a significant amount of com-
puting resources and thus may not be a viable option when the
host CPU utilization is high.

3. Characteristics of virtual machine migration

The efficiency of live migration is estimated by several char-
acteristics [6]. The main characteristics considered in this paper
are:

o T tal migration time: this is the total time of all migration
stages. During the migration, the system performance decreases,
which affects the quality of services provided and the process of
monitoring resources.

e Dow time: this is the time when the VM is completely
stopped. It is one of the main indicators in SLA agreements. At
the very least, this is the time to transfer the processor state for a
post-copy migration. For a pre-copy migration, this period also
includes the transfer of all RAM and iterative copying of the
modified memory pages.

4. Live VM migration dataset
4.1. Number of migrations

This paper analyzes a set of virtual machine migration data
collected and provided by a research team at the National Uni-
versity of Seoul [14], who used it to predict migration character-
istics using machine learning methods such as linear regression
and the support vector machine (SVM). This dataset contains
40000 records of various types of migrations — PRE-copy migra-
tions, POST-copy migrations, and maodifications to pre-copy

migrations, such as processor throttling (THR), delta compres-
sion (DLTC), and data compression (DTC).

The number of migration records of different types in the da-
taset is shown in Figure 3.
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Figure 3. Number of migrations of different species in the dataset

4.2. Applications

The dataset was obtained as a result of benchmarking. The
following test workloads were used:

e  SPECweb to simulate working with a web server that
hosts banking and e-commerce services;

e  OLTPBench is an online transaction processing data-
base application.

e Memcached — is a key-value cache store in memory,

e Dacapo is a collection of Java applications,

e PARSEC contains a set of multithreaded application
workloads.

e  Bzipis used as a compute-and data-intensive applica-
tion;

o mplayer-simulates the operation of a multimedia player.

o synthetic-synthetic loads;

e idle—no load.

The number of migrations for different types of loads is
shown in Figure 4.
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Figure 4. Number of migrations for different load types

4.3. Input features

The list of input features is given in Table 1. The first two
columns describe the feature, and the third column shows where
the factor value can be obtained from.

The features for the forecasting model were selected in such a
way that they cover all the aspects that can affect the estimated
characteristics. Since dynamic migration requires the transfer of
virtual machine memory to the destination host over the network,
the size of the allocated memory (VM_Size), and the available
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network bandwidth for transmission (PTR) are important fea- Table 2
tures for all models. Composed features
Table 1
Migration parameters Ne Metric Calculation
Ne Metric Calculation 1. |Weighted relative page transfer rate |IF
1 ; ; - B (RPTR) — weighted relative page  \/m wss * ((VM ndr /
The amount of RAM in the VM (VM_S|_ze). V|rtu_al Machine transfer rate to page dirty rate VM_ptr)* (((\(/M Egr /
The number of memory pages allocated in M. |Monitor (VMM) — —
VM_ptr)) < VM_wss
2. Average number of modified memory pages |VMM THEN
per second (VM_pdr). RPTR “VM_wss .
3. |The size of the working memory set is the VMM ((VM_pdr /  VM_ptr)*
number of memory pages changed during the (VM_pdr / VM_ptr)).
VM initialization period (VM_wss). ELSE
4 |The entropy of the working memory set VMM RPTR =VM_wss
(VM_wse). 2. |Non-working set size (VM_nwss) —|VM_nwss = VM_size -
5. |The entropy of the non-working memory set  |VMM number of not modified pages during|VM_wss

(VM_nwse).

profiling period

6. |Number of modified words on modified pages VMM
(VM_mwpp)

3. |Expected benefit of delta compres-
sion technique (DLTC_benefit)

DLTC_benefit = VM_wss *
VM_mwpp / (4096 / 2)

7 |Number of processor instructions per second |Source host

(VM_pmu_instr)

8. INetwork bandwidth reserved for live migra-  |Source host

tion (VM_ptr)

9. |Virtual Machine Processor Load Source host

(VM_cpu_util)

4. |Expected benefit of CPU throttling |THR_benefit=" VM_pdr *
technique (THR.BF) min((VM_cpu_util / 400.0),
1.0)
5. |Expected size of WSS after com- VM_e wss = VM_wss *
pression (VM_e_wss) VM_wse

10 |Network utilization on a VM (VM_net_util)  [Source host

6. |Expected size of NWSS after com-
pression (VM_e_nwss)

VM_e_nwss = VM_nwss *
VM_nwse

11. |cpuU utilization on the source host Source host

(src_cpu_avail)

12.

Memory utilization on the source host Source host

(src_mem_avail)

13. |cPuU utilization on the destination host Destination Host

(dst_cpu_avail)

14. Memory utilization on the destination host Destination Host

(dst_mem_avail)

Pre-copy-based algorithms that iteratively copy dirtied
memory pages to the destination host require knowledge of the
memory page dirty rate (VM_pdr) and the working set size
(VM_wss) of memory pages. There is a relationship between the
page dirty rate (VM_pdr) and working set size (VM_wss): the
first one represents the number of pages dirtied in one profiling
period, while the second one represents all pages dirtied over the
entire profiling period. For methods involving data compression,
the entropies of the working set (VM_wse) and non-working set
(VM _nwse), as well as the CPU and memory utilization of the
source (src_cpu_avail src_mem_avail) and destination host
(dst_cpu_avail, dst_ mem_avail) are included. To evaluate the
effectiveness of delta compression, the number of modified
words on the page (VM_mwpp) is measured.

4.4. Composed features

In addition to input features given in Table 1 composed fea-
tures were used, which were calculated on the basis of input fea-
tures [14]. The list of composed features is given in Table 2.
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5. Correlation analysis of features

Collecting such a large amount of raw data requires signifi-
cant resources, so it is important to reduce the number of features
in the models while maintaining the accuracy of the forecast. To
find a solution to this problem, consider the relationship between
input features and metrics. The correlation matrices of features
for pre-copy migration are shown in Figure 4, 5. For the THR,
DLTC, and DTC migration types, the matrices are similar in
many ways to the pre-copy migration, so they are not given.

Visually, it can be determined that the considered features are
not distributed normally. At the same time, there is a significant
correlation of the output characteristics (gemu_tt and gemu_dt)
with the features VM_wss, VM _pdr, VM size, VM_nwss,
VM_nwse, VM _ptr. In addition, such features as VM_wss and
VM_pdr, as well as VM_size, VM_nwse and VM_wss are pair-
wise correlated, and the some features, such as VM_pmu_instr,
src_cpu_avail src_mem_avail, dst_mem_avail do not affect the
output features.

The correlation matrices of features for the precopy migration
are shown in Figure 6, 7.

As it can be seen in Figure 7, post-copy migration has a short
and constant downtime (with the exception of some outliers), since
the downtime is only associated with the transmission of the current
processor state over the network. At the same time, the highest cor-
relation of the output characteristic gemu_tt (total migration time) is
observed with the parameters VM size, VM _wss, VM_nwse,
VM _ptr and src_mem_avail. Such features as VM_ptr, VM_wse,
VM_mvpp, VM _pmu_instr, VM _cpu_util,  dst cpu_avail,
dst mem avail do not affect the output characteristic.
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Figure 4. Correlation matrix of features for the precopy migration
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6. Results of experiments

It is known that the cross-correlation of input features has a
bad effect on the quality of the forecast. Indeed, if we build a
model only on these factors, without introducing composed fac-
tors, the quality of the obtained forecast by Linear Regression
(LR) and the support vector regression (SVR) is low (Table 3.)

Table 3
The results of the forecast for 14 input features
for precopy migration
Type of Machine | Predicted MAE M 100%-
migration | learning factor WAPE
method

PRE TT 7260.371 | 0.486 | 30.63%
DT 120.4 1.998 | 37.06 %

SVR TT 3260.371 | 0.228 | 64.35%

DT 158.0 1.403 | 52.29%

To compare the quality of forecasts obtained by various ma-
chine learning methods, the following indicators were used:
Mean Absolute Error ( MAE), Mean Relative Error (MRE). For
clarity, another indicator of forecast accuracy was introduced in
this paper, which was calculated as the inverse of the mean abso-
lute percentage error (MAPE):

N —_—
100%_izM.100%,
N&T A

where A; is the actual value of the output characteristic from the
test dataset;

F; is the forcast value;

N is the number of values in the test set.

By introducing composed features, the authors of [13] were
able to significantly improve the accuracy of the forecast (Table 4).

Table 4
The results of the forecast for 20 input features
Type of mi- | Machine | Predicted MAE MRE | 100%-
gration learning factor WAPE
method
PRE TT 3131.785 |0.164 |81.99 %
DT 151.0 0.268 [85.37 %
SVR TT 1213.210 |0.064 |92.27 %
DT 128.0 0.227 [89.33%
THR TT 3047.512 |0.164 |81.30 %
DT 239.4 0.497 |72.99 %
SVR TT 1154.471 |0.062 [92.22 %
DT 137.6 0.285 [86.56 %
DLTC TT 2414.955 |0.169 |78.03 %
DT 120.4 1.070 |7.17%
SVR TT 764.970 |0.054 |91.72 %
DT 39.7 0.353 |64.90 %
DTC TT 7770.499 |0.222 |73.37 %
DT 555.7 0.834 |66.38 %
SVR TT 3903.717 |0.112 |86.42 %
DT 333.5 0.501 |84.04 %
POST LR TT 1207.952 [0.121 |85.46 %
DT 1.1 0.520 |28.06 %
SVR TT 288.219 [0.029 |96.11 %
DT 0.6 0.289 |44.70 %

A correlation matrices with composed features for precopy,
delta compression, and post-copy migration types are shown in
Figure 8.
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Figure 8. Correlation matrices of composed features with (a) pre-copy,
(b) delta compression, and (c) post-copy migrations

The results shown in Table 5 were obtained by removing fea-
tures uncorrelated with the output, such as VM_pmu_instr,
VM_net_utils, src_cpu_avail, dst_cpu_avail, src_mem_avail,
dst_mem_avail.

As can be seen from Tables 4 and 5, if we remove factors that
are uncorrelated with the output features, the accuracy of the
forecast practically does not change, except for the type of mi-
gration with data compression (DTC). Also, the SVR machine
learning method shows more accurate results compared to linear
regression.
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DT VM_size, VM_pdr, VM_wss, VM_wse,
VM_nwse, VM_ptr

Composed Features

VM_e_wss, EMWSS

Table 5
Forecast results with composed features
Migration | Machine Predicted MAE | MRE | 100%-
type learning | characteristic WAPE
method

PRE TT 3131.785 ]0.164 |81.36 %
DT 151.0 0.268 |79.53%

SVR T 1213.210 |0.064 [92.70 %

DT 128.0 0.227 [88.68 %

THR T 7187.524 ]0.386 |53.81 %
DT 961.5 1.998 |2.64 %

SVR TT 1205.449 0.065 [92.09 %

DT 177.1 0.367 |77.51 %

DLTC T 3260.371 ]0.228 |54.10 %

DT 158.0 1.403 |58.21 %

SVR TT 809.267  |0.057 |89.86 %

DT 424 0.377 |49.43 %

DTC T 16105.914 |0.461 ]40.53 %
DT 21511 3.231 [56.3%

SVR T 5297.040 ]0.152 |78.79 %

DT 397.2 0.596 |77.57 %

POST LR TT 1214.535 |0.122 [85.00 %

DT 1.1 0.551 |24.83 %

SVR T 227.194 ]0.023 |97.02 %

DT 0.5 0.259 46.33 %

The most significant features are those that are involved in
the formation of composed features that can significantly im-
prove the accuracy of forecasting. This allows us to simplify the
process of generating a dataset and simplify the model itself
without significantly losing the accuracy of the forecast. Thus,
for 5 different types of migration, the main selected features are
listed in Table 6.

Table 6

Selected features for forecasting

Predicted
factor

Type of migration Features

PRE TT VM_size, VM_pdr, VM_wss, VM_ptr
Composed Features

RPTR, NWSS

DT VM_size, VM_pdr, VM_wss, VM_ptr
Composed Features
RPTR, NWSS

THR VM _size, VM_pdr, VM_wss, VM_ptr,
VM_mwpp
Composed Features

RPTR, NWSS, THR.BF

DT VM_size, VM_pdr, VM_wss, VM_ptr,
VM_cpu_util

Composed Features

RPTR, NWSS, THR.BF

DLTC VM _size, VM_pdr,
VM_mwpp, VM_ptr
Composed Features

DLTC.BF

VM_wss,

DT VM_size, VM_pdr,
VM_mwpp, VM_ptr
Composed Features
DLTC.BF

VM_wss,

DTC TT VM_size, VM_pdr, VM_wss, VM_wse,
VM_nwse, VM_ptr
CocraBHbIe (haKTOPHI:

E.WSS, EMWSS
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POST TT VM _size, VM_pdr, VM_wss, VM_ptr
Composed Features
RPTR, VM _e nwss
DT -
Conclusions

1. The features that most significantly affect the total migra-
tion time and the VM downtime are selected. The correlation
analysis made it possible to reduce the number of features by
about half compared to the known work, which significantly
reduces the complexity of collecting and processing the dataset
without losing the quality of the forecast.

2. The introduction of composed features into the model
made it possible to reduce the pair correlation of features and
significantly improve the accuracy of the forecast.

3. The SVR method generally provides a more accurate fore-
cast compared to linear regression and can be recommended for
use in predicting the characteristics of live migration.
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AHHOTauusa

MVIFPaLlMﬂ BMPTyaﬂbeIX MaLLUnH LIJI/IPOKO I/ICI'IOJ1b3yeTCﬂ B OGHa‘iHbIX Ll,eHTPaX OGPaGOTKVI AaHHbIX 4nAa MaCLLITaGVIPOBaHMﬂ n I'IO,CI,AeP)KaHMﬂ CTaGManOCTM
obnayHbix cepeucoB. OAHAKO MOKasaTenu KayecTBa paboTbl MPUNOXKEHUI BUPTYanbHOM MallWHbI BO BPEMS MUrpaLvW, 3afaBaeMble B COMMaLLIEHUAX 06
yposHe cepsmca, MOF)’T )’X)’,D.LLIMTI:CH. I'Iepen, TEM, KaK anHﬂTb pELLIeHI/Ie o 3anycxe Murpauww, Heo6xo,qm10 OLEeHUBaTb XapaKTepI/ICTI/IKM MVII'paLlVIVI,
BAMAKOLLIME HA Ka4ecTBO pa60TbI I'IPVIJ'IO)KEHVIVI. TaKVIMVI XaPaKTepVICTVIKaMVI ABNAKOTCA 06u.|,an ANUTENBbHOCTb MVII'PaLWIVI n ANUTENbHOCTb I'IPOCTOH
BMPT)’aanOVI MallUuHBbI, KOTOPbIe ABNAKOTCA CﬂyqaﬁHblMM BE€NUYMNHAMU, 3aBUCALLIUMU OT MHOXKECTBA ¢aKTOpOB. nPOFHO3MPOBaHMe OCHOBbIBAa€TCA HA AaHHbIX
MOHWTOPUHIa BUPTYasnbHbIX MalinH. B pabote Bbibupatotca Havbonee nopxopsawme ¢akTopbl AnA MPOrHO3a MO MATM BUAAM MUIpaLMii: MUrpaumu c
npeABapuTeNibHbIM KOMMpOBaHWEM (precopy migration), MWrpaumMu C MNocT KOMMpoBaHuWeM (postcopy migration) M MoaudbUKaLMU MUrpauum
C I'IPep,BaPVITEJ'IbeIM KOI'IVIPOBaHVIeM, C NCnosb30BaHUEM ,Cl,pOCCGJ'IVIpOBaHVISl npou,eccopa, COKaTueM AaHHbIX U AeNibTa-CKaTUeEM MU3MEHEHHbIX CTPaHVILI,
namMAaTun. ﬂ.ﬂﬂ 3TOoro npoaHanMaMpoaaH HaGOP AAaHHbIX, BKﬂIO‘-IaIOIJ.lI/Iﬁ B Ce6ﬂ AaHHble NO NATU BUAAM MMI’paLlMﬂM, I'IPMMePHO no 8000 3anucen Kaxxaoro
BMAaa. C UCMoJib30OBaHNEM KOPpenHLI,VIOHHOI’O aHanum3a BbI6PaHbI (baKTOPbI, BSIUAIOLLME HA AJIUTENIbHOCTb MMI’PaLWIVI U ANIUTENbHOCTb I'IPOCTOﬂ BVIPT)’aJ'IbHOl‘;I
MalUnHbI. nPOFH03VIp)’IOTCﬂ o6u.|,an ONUTENBHOCTb MMFPaLWII/I n ANNTENbHOCTb I'IPOCTOﬂ BMPT)’aJ‘IbHOﬁ MaLLUUHbLI BO BPeMFI erpauww C UCNOJIb3OBaHUEM TaKUX
MEeTO40B MALUMHHOro O6)"‘|eHVIﬂ, KaK JIMHEeNHan perpeccvm n Metoa OI'IOPHI:IX BeKTOpOB. I'I0Ka3aHo, YTO 4YUCno ¢aKTOpOB MOXHO COKpaTVITb nMoYTU B ABa
pa3a an TOM >Ke Ka4vyecTBe nporHo3a. B uenom NIMHENHaA perpeccwﬂ AaeT OTHOCUTENbHO BbICOK)’IO TOYHOCTb I'IPOFH03a 06u4e17| ONNUTENBbHOCTb MI/IFPaLlMM n
ANUTENBbHOCTb ﬂpOCTOﬂ BVIPT)’aJ'IbHOVI MaLlUUHBbI. B TO Xe BPEMH Ha6mop,aeMaﬂ HENMUHENHOCTb B KOPPeJ‘IHLIMOHHbIX CBA3AX MOKa3bIBaE€T, YTO AS1A NOBbILLUEHUA
Ka4ecTtBa NnporHosa u.enecooGpa3Ho UCNoJIb30BaTb METOA OMNOPHbIX BEKTOPOB.

Knioqeenlie cnoea: supmyanusauus, KOppenauUOHHbIU aHANU3, XKUBAA Mu2pauus, ueHmpbl 06pabomku aHHbIX, AIUMENLHOCMb MUZpauuL, Memod ONopHbIX
8€KMOpo8, JUHEUHAsA pezpeccus.
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