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The problem of optimal placement of elements of electrical and electronic
circuits is considered. The minimum weighted length of the connections is
selected as the criterion. The scheme is defined by a matrix of connections.
We consider a fixed set of element positions and a distance matrix based
on an orthogonal metric. This problem is a variant of the general mathe-
matical model, called the quadratic assignment problem. The geometric
limitation of the problem is that no more than one element is placed in one
cell. Combinatorial analogs of the Gauss-Seidel method, the genetic algo-
rithm, and the corresponding hybrid methods for solving the quadratic
assignment problem with optimal placement of electronic equipment ele-
ments are developed and implemented on a computer. A series of compu-
tational experiments was conducted, which showed satisfactory computa-
tional qualities of the proposed methods. The proposed computational
method, which is a combinatorial analog of the method of coordinate
descent and one of the variants of the general approach based on paired
permutations, is characterized by the best computational qualities among
the methods studied in the article. According to well-known studies, the
genetic algorithm is obviously no worse than the Monte Carlo method. The
research conducted in the article shows that the method of penalty func-
tions in the problem of placement and for the case of a genetic algorithm
is ineffective. Therefore, it is of interest to consider permutations without
repetitions as individuals of the population. This circumstance is taken into
account at the stages of selection and mutation: at these stages, the stan-
dard calculations according to the genetic algorithm are supplemented by
the procedure of paired rearrangements of genes in the chromosome. The
article provides a detailed description of the program for the implementa-
tion of the genetic method on a computer.
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1. Introduction. Problem statement

The task of optimal placement of electrical and electronic 
circuit elements and the tracing of their connections is one of the 
topical issues in the design of radio equipment [1-13]. When 
solving this problem, various criteria and constraints are applied 
[1]. As a result of calculation the coordinates of arrangement of 
separate elements of circuit on a switching field (SF) and topo-
logical characteristics of connections of their terminals are found. 
At structurally identical elements positions for their installation on 
controls are fixed, located in nodes of a rectangular grid and can 
be described by the following system of parameters: 

n, , h , h ,x y x yn where – xn number of positions in a horizontal 

row; yn  – number of positions in a vertical row; xh  – hori-

zontal step between positions; yh  – vertical step between posi-
tions. The criterion in most cases is the minimum weighted length 
criterion (MWL) of connections. 

Given elements 1,...,e en , for each pair of elements weights 

ij (r i, j 1,..., )n ,defining "degree of connection" of these elements 

and forming a matrix of connections R rij i j, 1,...,n
 are given.

There is a set of positions for placing the elements 
1 m,..., (p m )np . Without loss of generality we will assume that 

m n. Let us define distances between ij (d i, j 1,..., )n pairs of 

positions that define a symmetric matrix ij ,i j 1,...,n
D d with

zero principal diagonal ii 0(d i 1,..., )n . An orthogonal metric is 
used to calculate the elements of matrix D.

Arbitrary placement of elements in positions is some permu-
tation 1p ,...,p pn  of , where ip specifies the position number 
assigned to the i-th element. Thus, there is a total number of dif-
ferent n!placement variants for the elements. Attempts to find 
an optimal variant by a brute force search are unsuccessful even 
for small values of n:  16! = 20922789888000 = 1013,32….

25!=15511210043330985984000000 = 10 25,19….

An example of a control is given in Figure 1 and 2. The length 
of the connections between the elements and ie je  is evaluated 

by the value of ij ij p i( )p( j)( ,i j 1,..., )nL r d  . 

Figure 1. Representation of the switching field 

Figure 2. Fixed set of 12 positions 

Denote by the set SE of all fixed elements, including the 
elemen 0e , then the total weighted length of connections of the 
element ie with elements from SE is estimated by the formula: 

i( )
s

ip is p i( )s
s E

a r d ( 1,i ..., )n ,

where p i( )sd is the distance between ie the element in position 

ip  , and the element se .
Given the symmetry of the R and D matrices, let us write down 

an expression for the total weighted length of the connections for 
an arbitrary placement:  

i( ) p( j) )
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2
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ij p ip(i
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F( p r d a .

For an orthogonal metric, the problem of placement according 
to the MSVD criterion of connections is to minimise the func-
tional: 
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on the set of permutations of P connections. This problem is a 
variant of a general mathematical model called the quadratic 
assignment problem [1, 6-8]. 

Geometric restriction – no more than one element can be 
placed in one cell, i.e.  
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2. Combinatorial analogues of the Gauss-Seidel method
in the placement problem 

2.1. Classic variant 

We will solve the integer optimization problem with the target 
function F(x), where x is the vector of optimized placement pa-
rameters, namely, permutation without repetitions of position 
numbers of n elements. The coordinates of cells for element 
placement can be calculated through the position number. Such an 
approach is economical for the reason that geometric constraints 
are automatically taken into account.  

Experience shows that if we solve the problem in the usual 
way for the target function with geometric constraints taken into 
account by the penalty function method, the laboriousness in-
creases quite significantly. The problem gets "bored" in one place 
in the penalty area which has a complex form. Escaping from the 
penalized area is very difficult, as a consequence, all considered 
traditional optimization methods for continuous argument func-
tions fail. If we consider only the space of permutations without 
repetitions, there is no need for penalty functions. But when using 
conventional variants of the optimization methods, there is a high 
probability of exceeding the boundaries of the considered per-
missible domain.  

This can be avoided by some modification of standard opti-
mization methods. The problem is most simply solved for the 
Gauss-Seidel (co-ordinate descent) method. In the classical vari-
ant of this method each coordinate is stepped in turn in order to 
find the smaller value of the target function. Here you can choose 
between searching for a local minimum for each coordinate with a 
certain accuracy, e.g. you can limit yourself to one step towards 
decreasing the value of the function, or you can search for the 
exact value of the local minimum coordinate. The first approach 
seems pragmatic for a number of reasons, first of all due to sim-
plification of the algorithm, especially considering the integer 
nature of the arguments.  

At the first step of this optimization procedure, as a rule, there 
is an overrun of the permissible area. In the modified combinato-
rial variant of the method after such a step the permutation is 
corrected: the argument whose value coincided with the new 
value of the varied coordinate is found. The value of this argument 
is replaced by the original value (before the optimization step) of 
the varied coordinate. As a result, there is a return to the permu-
tation space without repetitions (repetition of position number 
values is eliminated). Thus, in the combinatorial variant of the 
co-ordinate descent method two coordinates are changed simul-
taneously at one calculation step (instead of one as in the usual 
variant) - the usual trial step is made along one of the coordinates, 
and along the other one correction, return to the acceptable area is 
made.  

Then the value of the target function at the found point is 
calculated and compared to the previously achieved value. If there 
is improvement of the value, the found point becomes a new 
starting point. Otherwise a step on another coordinate is made 
with simultaneous correction of the vector of item numbers (re-
turn to the allowable area). It's clear that the considered compli-
cation of the algorithm of the co-ordinate descent method can lead 
to some decrease in its usual high efficiency. Nevertheless, the 
experience of applying the combinatorial variant of the method in 
solving the EVA placement problem has shown its significant 

advantages over other known methods, such as the genetic algo-
rithm and the penalty function method. 

As a rule, this method allows to find a local minimum. To find 
the global optimum, the so-called multistart method is used. The 
new starting point is chosen most simply by Monte Carlo method 
with equal probability in the whole admissible region. It is possi-
ble to wander similarly to the annealing method based on some 
transition probability [10,11]. Start selection can be done in the 
immediate vicinity of the achieved local minimum. It is advisable 
to apply criteria for selecting starting points that are effective for 
the particular problem.  

2.2. A randomised combinatorial analogue 
of the "fast variable" method 

The classical procedure of the Gauss-Seidel method for the 
problem in question may not be rational for the following reason. 
At each computational step, local optimization is performed on 
each of the n variables of the target functions, while these com-
putations are relatively expensive. There is a randomised variant 
of the Gauss-Seidel method, in which the variables for which local 
optimisation is carried out are chosen randomly and equally 
likely. But on average, the computational complexity here is of a 
similar order of magnitude.  

Therefore considered variants of the Gauss-Seidel method in 
this respect lose to the genetic algorithm which requires the 
number of calculations of the target function at each step of the 
order of number of individuals in one generation m. Similar is the 
case with the swarm method, for which N target functions equal to 
the dimensionality of the swarm are computed at each step. An 
improvement of the procedure of the Gauss-Seidel method is 
achieved in its variant, called the fast variable method, which is 
chosen from the condition of the maximum modulus of deriva-
tives on coordinates from the target function.  

However, this also requires n estimates of the derivatives. A 
favorable circumstance is that in the quadratic assignment prob-
lem the fast variable can be found from the values of the rela-
tionship matrix. Such variables correspond to the elements that 
have the largest number of links. That is, the estimated criterion 
for the fast variable is a value equal to the matrix norm for the 
relationship matrix R, namely 

1,..., 1
m ax

n

ijni j
r . However, this crite-

rion is, as noted, an estimator; for this and other reasons, im-
proving the computational qualities of the method is achieved 
through randomization. In this case the choice of coordinates for 
local optimization is random, but the probability of variable se-
lection is directly proportional to the row sum of the link matrix R,

1

n

ij
j

,r inamely 1, ... , n , equal to the number of links of the 

element with the remaining elements of the chain. 

2.3. Examples of calculations.

2.3.1. An analogue of the classical Gauss-Seidel method 

The connection matrix is given analytically in the form of 

r i j i( )j , r 0, (i, j 1,...,n .)ij ii
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Step of a cell, number of steps by coordinates and total number 
of cells and elements: h=1;n0=6; n=36. At the beginning the 
initial approximation was searched by Monte Carlo method (10 
000 iterations), after that the local optimum was calculated by 
combinatorial method of co-ordinate descent (a limit of 100 iter-
ations was set). The initial value of the step by coordinate was 
equal to n, further on each iteration it was reduced by 1 until the 
minimum possible value was equal to 1.  

The initial approximation turned out to be 
x0=(36,12,6,1,35,19,5,32,31,26,29,34,8,16,28, 
33,13,24,10,2,18,4,27,21,22,15,7,25,11,3,17,9,23,14,20,30), the 
corresponding value of the target function fmin_0=177648. After 
calculations by combinatorial descent method, the solution has the 
form: x1= (36,1,6,31,35,2,12,32,5,7,25,4,30,33,34,13,19, 
24,3,18,26,29,8,28,11,27,9,10,23,20,17,14,16,21,15,22), local 
optimum fmin=171168 (found after 1 iteration, after 2-3 iterations 
the smallest value found with more iterations is 171120). 

Example of calculations without finding a refined initial ap-
proximation. After the first iteration by Monte Carlo method: 
fmin_0=185400; 

x0=(6,30,19,3,12,33,2,10,9,20,18,25,7,26,13,4,24,27,16,23,17
,8,28,21,5,34,29,11,22,36,15,1,35,31,32,14). The solution found 
further by a modified method of descending is much better: 
fmin=171192; 

x(1)=(6,1,36,31,35,12,5,25,30,2,32,33,7,3,34,18,24,4,19,29,13
,8,11,9,26,28,10,20,14,17,27,23,16,15,21,22). 

2.3.2. Fast Variable Method 

Start point 
{36,12,6,1,35,19,5,32,31,26,29,34,8,16,28,33,13,24,10,2,18,4,27
,21,22, 15,7,25,11,3,17,9,23,14,20,30). After k=46 iterations, 
fmin=171120. 

In the classical variant after the first iteration fmin=171168, 
after 2 iterations fmin=171120 (no further improvement with more 
iterations), but the ratio of computational cost per step in this 
variant is 1 to 36 compared to the fast variable method. 

It is found that in the presence of elements with a very large 
number of links, the fast variable method can significantly im-
prove accuracy in the first few iterations. But for further refine-
ment it is reasonable to apply the random variable method or the 
classical version of the combinatorial Gauss-Seidel method. 

3. A method for solving the placement problem based
on a genetic algorithm and pairwise permutations

The genetic optimization algorithm is an example of the bionic 
approach [9,13]. It consists of the following. 

1. In the first step, an initial population is set up with a defined
population size. 

2. In the second step, survival factors are calculated according
to the target function, and their sum is equal to one. Sometimes 
relative error estimates and similar criteria are applied. 

3.. statistical generation of a given number of breeding pairs
is carried out. The probability of an individual being paired is 
determined by the survival rate (value of the value function). 

4. The selected pairs are crossed over. The vectors of the in-
dependent variables are divided into two parts, which the mem-
bers of the pair exchange. As a result, offspring with mixed vec-
tors, form a new population.  

5. If the characteristics of the offspring are poor, it is rational
to use a mutation based on randomisation. 

6.. S ection of offspring enables selection of individuals with
the best survival properties. 

7.. I the solution found needs to be improved, then proceed to
step 2. 

According to research, the genetic algorithm converges as well 
as the Monte Carlo method. Other stochastic optimization algo-
rithms are also known [10,11]. 

This study shows that the penalty function method in the 
placement problem and for the case of the genetic algorithm is 
inefficient. Therefore it is of interest to consider permutations 
without repetitions as individuals of the population. This circum-
stance is taken into account at the stages of selection and muta-
tion: at these stages, the standard calculations according to the 
genetic algorithm are supplemented by the procedure of pairwise 
permutations of genes in the chromosome. 

A description of the software to implement the method de-
scribed:  

First, the dimensionality of the problem and the relationship 
matrix of the elements r[i,j] are specified.  

Then using a given number of iterations, the Monte Carlo 
method finds m different permutations without repetitions of the 
numbers 1, ... , n – the initial approximation to the solution of the 
problem, or the first generation of m individuals.  

The following calculation steps are iterated according to the 
genetic algorithm method with correction according to the pair-
wise permutation method (this ensures that the penalty function is 
always equal to zero, i.e. there is no overstepping of the permis-
sible area): 

1) Survival rates for each individual and the corresponding
probabilities of participation in the cross are calculated. 

2) Monte Carlo draw of the numbers of m pairs of individuals
to cross. The probabilities of participating in the crosses are pro-
portional to the survival rate of the individual. 

3) The inbreeding procedure results in 2m offspring.
Cross-breeding is carried out according to the following rule. The 
first offspring consists of the head part of the second parent's 
chromosome of length k elements. The remaining n-k genes form 
the tail of the first offspring's chromosome, and are taken from the 
first parent. The second offspring is obtained in a similar way, but 
with mirror symmetry: it consists of the head part of the first 
parent's chromosome with length of k genes. The remaining n-k
genes form the tail of the second offspring's chromosome and are 
taken from the second parent. 

4) The chromosomes of 2m descendants obtained by the usual
crossing procedure in step 3 are modified according to the rules of 
the pairwise permutation method to return the corresponding 
integer sets of numbers to the admissible set of permutations 
without repetitions of the first n natural numbers. In this case, k
first genes of descendant are considered one by one, for each one 
the matching gene of its chromosome is found. To eliminate du-
plication of genes, instead of the found copy of the head gene the 
corresponding gene from the head of its parent's chromosome is 
substituted. This chromosome modification is essentially a kind of 
mutation of the offspring obtained in step 3. 

In the PascalABC programming system, steps 3 and 4 are 
carried out as follows. 3 and 4 are carried out in the following 
program block:  
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   for i := 1 to m do  
begin i1:=num[i,1]; i2:=num[i,2]; 

 for j:=1 to n do gen1[i,j]:=gen0[i1,j]; 
   for j:=1 to k do begin g:=gen1[i,j]; gen1[i,j]:=gen0[i2,j]; 

j0[j]:=e_num_(i,j,gen1[i,j],gen1,res[j]);  
   if res[j] then gen1[i,j0[j]]:=g; end; 

 for j:=1 to n do gen2[i,j]:=gen0[i2,j]; 
 for j:=1 to k do begin g:=gen2[i,j]; gen2[i,j]:=gen0[i1,j]; 

j0[j]:=e_num_(i,j,gen2[i,j],gen2,res[j]);  
   if res[j] then gen2[i,j0[j]]:=g; end; 
end; 

Here i1, i2 are numbers of individuals participating in the in-
terbreeding (the numbers are played out randomly according to 
item 2), gen0[i,j] is the matrix of the parent population, the rows 
of which correspond to the individuals (chromosomes), gen1[i,j], 
gen2[i,j] are matrices of descendant chromosomes. 

5) The selection is carried out according to the survival crite-
rion among two generations from a pooled population of 3m in-
dividuals. The selection includes m individuals from the original 
population and all 2m children. The m best individuals are re-
tained. 

 for i := 1 to m do for j := 1 to n do 
   begin gen3[i,j]:=gen0[i,j]; gen3[i+m,j]:=gen1[i,j]; 

gen3[i+2*m,j]:=gen2[i,j]; end;        
 ord_(3*m,gen3,i0); for i := 1 to m do for j := 1 to n do 

gen0[i,j]:=gen3[i0[i],j];  
6) Preventing duplication of individuals in a population. When

a duplicate is found, a second copy of the repeating individual is 
replaced with an individual obtained by the Monte Carlo method. 

for i1 := 1 to m do for i2 := i1+1 to m do begin b:=true; for j := 
1 to n do if gen0[i1,j]<>gen0[i2,j] then b:=false; if b then begin 
p3(x); for j := 1 to n do gen0[i2,j]:=x[j]; end; end; 

7) Mutation is carried out - the worst individual (always hav-
ing number m after a given number of iterations (generations)) is 
replaced by a random individual from a valid set using the Monte 
Carlo method.  

if iter mod 2 = 0 then begin p3(x); for j := 1 to n do 
gen0[m,j]:=x[j]; end; 

The stopping criterion is the limiting number of iterations 
(generations). Calculation of the target function: 

function f(x : Vector) : integer; var s,i,j : integer; xx,yy : 
Vector0; 

begin  
   for i := 1 to n do begin xx[i]:=h*(trunc((x[i]-1)/n0) +1); 

yy[i]:=h*(x[i]-n0*trunc((x[i]-1)/n0)); end; 
s:=0; for i := 1 to n do for j := 1 to n do if i<>j then 

s:=s+r[i,j]*d(i,j,xx,yy); f := s; end; {f} 
Calculation of the survival vector of individuals of the same 

generation and the probabilities of participating in a cross: 
procedure p1(gen : Matrix; var v,z : Vector1; m : integer); 
var s : real; i,j : integer; x : Vector; p : Vector1; 
begin  
   for i := 1 to m do begin for j := 1 to n do x[j]:=gen[i,j]; 

v[i]:=abs(f(x)); end;  
   s:=0; for i := 1 to m do s:=s+1/v[i]; for i := 1 to m do 

p[i]:=1/v[i]/s; z[0]:=0;  
   for i := 1 to m do z[i]:=z[i-1]+p[i]; 
end; {p1} 

Calculating the random number of an individual to participate 
in a cross: 

function num_(m : integer; z : Vector1) : integer; var v : real; j 
: integer; begin v:=random; for j := 1 to m do if (z[j-1]<=v) and 
(v<z[j]) then num_:=j; end; {num_} 

Arrangement of individuals of the two generations according 
to their value function: 

procedure ord_(m : integer; gen : Matrix1; var i0: Vector2); 
var v,vmin : real; i,j,k : integer; b : boolean;  

begin for i:=1 to m do begin vmin:=MaxInt; for j := 1 to m do 
begin b:=true; for k:=1 to i-1 do if j=i0[k] then b:=false; if b then 
begin {1} 

v:=w3(j,m,gen); if v < vmin then begin {2} vmin:=v; i0[i]:=j; 
end; {2} end; {1} end; {j} end; {i} end; {ord_} 

Calculates the item number at a given position: 
function e_num(p : 1...n; x : Vector) : 1...n; var i : integer; 

begin for i:=1 to n do if p=x[i] then e_num :=i; end; {e_num - 
element number at position p} 

function e_num_(i,j,p : 1..n; gen : Matrix; var res : boolean) : 
1..n; var k : integer; begin res:=false; for k:=1 to n do if k<>j then 
if p=gen[i,k] then begin e_num_ := k; res := true; end; end; 
{e_num_ - number of element in p position for row in matrix gen} 

Calculating a random chromosome: 
procedure p3(var x : Vector); label 1; var i,j : integer; b : 

boolean; begin for i:=1 to n do begin 1: x[i]:=random(n)+1; b := 
false; for j:=1 to i-1 do if x[i]=x[j] then begin b:=true; break; end; 
if b then goto 1; end; end; {P2 random permutation without re-
peats} 

4. Example of calculations

4.1. Genetic algorithm 

The connection matrix is sparse and is given as
ijr i1, | |j 1 ij; r 0, i| |j 1; i, j 1,...,n. Cell step, number of 

coordinate steps, total number of cells and elements, number of 
individuals in one population: h=1; n0=6; n=36; m=5; Every two 
calculation steps a mutation was performed, the worst population 
member was replaced by a random one. The initial placement is 
shown in Fig. 3 (xi=i, i=1,…,n). The corresponding value of the 
target function fmin=120, with exact finf=70. 

Figure 3. Genetic algorithm method. Initial placement 
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The best approximate solution after 28790 iterations is fmin=76
(it was not improved after 100,000 iterations either),     
see Figure 4.  

Figure 4. Genetic algorithm method. Locally optimal placement 
after 28790 iterations 

4.2. Hybrid method "genetic algorithm+combinator 
analog of the Gauss-Seidel method 

The initial condition is the same as in the previous point 
(Figure 3). The global optimum is reached after 59 iterations (see 
Figure 5 and table). 

Figure 5. Hybrid method. Global optimum 

Table
Calculation results 

Iteration number The values of individuals 
in the population 

1 120  270  304  284  306 
3 112  214  260  136  242 
5 104  192  132  250  208 
9 96  102   112 11212 208 
10 88   96  224  100   98 
11 84   88  96  224   214 
21 78  222   84  224  242 
28 74   78  78   240   80 
59 74   78   74  222  256 
591 70   74   74   74   78 
592 70   74   74  286   78 
593 70   74   74  214   78 

1 After crossbreeding and selection among the generations 
2After mutation. 3After improvement by the Gauss-Seidel method 

4.3. Chains with multiple links between elements 

The initial placement of the 36 chain elements is shown in  
fig. 6. The number of linking elements is uniformly distributed 
randomly from 1 to 5. The corresponding initial value of the target 
function fmin=324, with exact finf=208.

Figure 6. Hybrid method. Initial placement 

The global optimum is reached at iteration 353 and is shown in 
Figure 7. 

The computational process does not in all cases converge 
quickly to an exact solution. The local optimum shown in Figure 8 
(fmin=244, with exact finf=226), was reached after 25,000 itera-
tions. At each step, 1 mutation was performed. The remaining 
conditions are the same as in the previous paragraphs. 
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Figure 7. Hybrid method. Global optimum 

Figure 8. Hybrid method. Locally optimal placement 

Conclusions 

Combinatorial analogues of Gauss-Seidel method, genetic 
algorithm and hybrid methods for solving a quadratic problem of 
optimal electronic equipment allocation were developed and re-
alised on computer. A series of computational experiments were 
carried out and showed satisfactory computational qualities of 
proposed variants of the methods. 
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КОМПЬЮТЕРНАЯ ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ ЭЛЕМЕНТОВ ЭЛЕКТРОННЫХ ЦЕПЕЙ 

Абас Висам Махди Абас, Южно-Российский государственный политехнический университет 
(Новочеркасский политехнический институт), Новочеркасск, Россия, abas.wisam.82@mail.ru

Аннотация
Рассматривается задача оптимального размещения элементов электрических и электронных цепей. В качестве критерия выбран минимум взвешен-
ной длины соединений. Схема задана матрицей соединений. Рассматривается фиксированный набор позиций элементов и матрица расстояний на
основе ортогональной метрики. Данная задача является вариантом общей математической модели, получившей название задачи квадратичного на-
значения. Геометрическое ограничение задачи – в одной ячейке размещается не более одного элемента. Разработаны и реализованы на ЭВМ ком-
бинаторные аналоги метода Гаусса-Зейделя, генетического алгоритма и соответствующие гибридные методы для решения задачи квадратичного
назначения при оптимальном размещении элементов электронной аппаратуры. Проведена серия вычислительных экспериментов, которые показа-
ли удовлетворительные вычислительные качества предложенных вариантов методов. Предложенный вычислительный метод, являющийся комби-
наторным аналогом метода покоординатного спуска и одним из вариантов общего подхода на основе парных перестановок характеризуется на-
илучшими вычислительными качествами среди исследованных в статье методов. Согласно известным исследованиям генетический алгоритм схо-
дится заведомо не хуже метода Монте-Карло. Проведенное в статье исследование показывает, что метод штрафных функций в задаче размеще-
ния и для случая генетического алгоритма является малоэффективным. Поэтому представляет интерес в качестве особей популяции рассматривать
перестановки без повторений. Это обстоятельство учитывается на этапах селекции и мутации: на указанных этапах стандартные вычисления со-
гласно генетическому алгоритму дополняются процедурой парных перестановок генов в хромосоме. 
В статье дано подробное описание программы для реализации на ЭВМ генетического метода.

Ключевые слова: электрическая схема, ограничения размещения, топологические параметры, метрические параметры, коммутационное поле,
критерии и методы оптимизации.
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