+7 (495) 957-77-43

T-Comm_Article 1_4_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

APPLICATION OF MIMO TECHNOLOGY IN MODERN WIRELESS  COMMUNICATION SYSTEMS OF DIFFERENT GENERATIONS

Mikhail G. Bakulin, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, m.g.bakulin@gmail.com
Vitaly B. Kreyndelin,
Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, vitkrend@gmail.com
Denis Y. Pankratov,
Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, dpankr@mail.ru

Abstract
Multiple Input Multiple Output (MIMO) technology is widely used in modern IEEE radio access systems. There is a tendency to increase the number of antennas, which is also confirmed by the development of MIMO technology in mobile communication systems of 3GPP standards. Requirements for modern radio communication systems are constantly increasing. As the radio frequency spectrum becomes increasingly scarce, it becomes increasingly difficult to transmit large amounts of information by expanding the frequency channel bandwidth. Therefore, the use of MIMO technology to increase the spectral and energy efficiency of communication systems is relevant. In 5G systems, Massive MIMO technology is used, when using which the number of antennas is measured in tens and hundreds. The characteristics of various versions of MIMO technology implemented in the existing standards 802.11n, 802.11ac, 802.11ax, as well as in the promising standard 802.11be (6G systems) are described in detail. Technologies of directional transmission, spatial multiplexing, selection of antennas as particular cases of precoding are considered. Trends of MIMO technology development in wireless communication systems are shown.

Keywords:MIMO, Massive MIMO, 5G, IEEE, 802.11n, 802.11ac, 802.11ax, 802.11be, Wi-Fi, Beamforming.

References

1. G. J. Foschini and M. J. Gans, (1998) «On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas, Wireless Personal Communication. Vol. 6. No. 3, Mar. 1998. P. 311.
2. Bakulin M.G., Varukina L.A., Kreindelin V.B. (2014). MIMO Technology: Principles and Algorithms. Moscow: Hotline — Telecom. 244 p.
3. Larsson E.G., Edfors O., Tufvesson F., Martezza T.L. (2014) Massive MIMO for next generation wireless systems. Communications Magazine, IEEE. Vol. 52, issue: 2. P. 186-195.
4. M. G. Bakulin, V. B. Kreindelin and D. Y. Pankratov (2018) «Analysis of the capacity of MIMO channel in fading conditions,» 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Minsk, 2018. P. 1-6.
5. IEEE 802.11n Standard for Information Technology — Telecommunications and Information Exchange Between Systems — Local and Metropolitan Area Networks — Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput, 2009.
6. IEEE 802.11ac Standard for Information Technology — Telecommunications and Information Exchange Between Systems — Local and Metropolitan Area Networks — Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, 2013.
7. IEEE 802.11ax Draft Standard for Information Technology — Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks — Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment Enhancements for High Efficiency WLAN, 2019
8. 3GPP TS 36.871 v.11.0.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Downlink Multiple Input Multiple Output (MIMO) enhancement for LTE-Advanced (Release 11), 2011.
9. ETSI TS 136 201 V15.1.0 (2018-07) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; General description (3GPP TS 36.201 version 15.1.0 Release 15), 2018
10. 3GPP TS 36.211 V15.10.0 (2020-06) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 15), 2020.
11. Kreyndelin V.B., Smirnov A.E., Ben Rejeb T.B.K. (2016) Efficiency of signal processing in multiuser large scale MIMO systems. T-Comm. Vol. 10. No.12. P. 24-30. (In Russian)
12. S. M. Alamouti (1998) «A Simple Transmit Diversity Technique for Wireless Communications», IEEE JSAC, Vol. 16, No. 8, Oct. 1998. P. 1451-1458.
13. Q. H. Spencer et al. (2004) «An Introduction to the Multi-User MIMO Downlink» IEEE Commun. Mag., Vol. 42, No. 10, Oct. 2004. P. 60-67.
14. Wang F., Bialkowski M.E. (2011) Performance of Block Diagonalization Scheme for Downlink Multiuser MIMO System with Estimated Channel State Information. Int. J. Communications, Network and System Sciences. No. 4. P. 82-87.
15. Hanzo Lajos et al. (2010), MIMO-OFDM for LTE, Wi-Fi and WiMAX: Coherent versus Non coherent and Cooperative Turbo-Tranceivers / Lajos Hanzo, Yosef (Jos) Akhtman, Li Wang, Ming Jiang. John Wiley & Sons. 692 p.
16. Eldad Perahia, Robert Stacey (2013), Next Generation Wireless LANs: 802.11n and 802.11ac, 2nd Edition, UK, Cambridge, Cambridge University Press. 445 p.
17. D. Lopez-Perez, A. Garcia-Rodriguez, L. Galati-Giordano, M. Kasslin and K. Doppler (2019) «IEEE 802.11be Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax,» IEEE Communications Magazine. Vol. 57. No. 9. P. 113-119, September 2019.
18. Telecom Advisory Services, LLC, «The Economic Value of Wi-Fi: A Global View (2018 and 2023)», Aug. 2018.
19. X. Chen et al. (2018), «Discussions on the PHY features for EHT», IEEE 802.11-18/1461r0, Sep. 2018.
20. Po-Kai, L. Cariou, R. Stacey, D. Bravo, A. Klein, and C. Cordeiro (2019), «Multi-link operation framework», IEEE 802.11-19/0773r1, Jul. 2019.
21. Y. Xin et al. (2018) «Technical Report on Full Duplex for 802.11», IEEE 802.11-18/0498r6, Sep. 2018.
22. B. Hart, D. Kloper, A. Myles, V. Desai, P. Monajemi, and M. Taneja (2018) «Recommended direction for EHT», IEEE 802.11-18/1549r0, Sep. 2018.
23. D. Lopez-Porez, M. Kasslin, E. Rantala, E. Torkildson, L. Galati, and A. Garcia-Rodriguez (2019) «Distributed MU-MIMO architecture design considerations», IEEE 802.11-18/1190r0, Jan. 2019.
24. R. Porat and S. Puducheri (2018) «Constrained Distributed MU-MIMO», IEEE 802.11-18/1439r0, Sep. 2018.
25. Bakulin M.G., Kreindelin V.B., Pankratov D.Y. (2014) Technologies in Radio Communication Systems on the Way to 5G. Moscow: Hotline — Telecom. 280 p.
26. D. Pankratov and A. Stepanova (2019) «Linear and Nonlinear Chebyshev Iterative Demodulation Algorithms for MIMO Systems with Large Number of Antennas,» 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia. P. 307-312.
27. Kreyndelin, D.Y. Pankratov, A.G. Stepanova (2020) «Chebyshev type nonlinear iterative demodulation algorithm for MIMO systems with large number of antennas» Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). No.79(13). P. 1109-1119.

Information about authors:
Mikhail G. Bakulin, Moscow Technical University of Communications and Informatics (MTUCI), PhD, associate Professor, Moscow, Russia
Vitaly B. Kreyndelin, Moscow Technical University of Communications and Informatics (MTUCI), Doctor of technical science, Professor, Moscow, Russia
Denis Y. Pankratov, Moscow Technical University of Communications and Informatics (MTUCI), PhD, associate Professor, Moscow, Russia