+7 (495) 957-77-43

T-Comm_Article 2_1_2020

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

SPATIAL PARALLELISM OF HIGH-SPEED TRANSMISSION
OF INFORMATION OVER OPTICAL FIBRES

Vladimir N. Korshunov, Moscow Technical University of Communications and Informatics, Moscow, Russia, mes@mtuci.ru
Irina A. Ovchinnikova, All-Russian Research Institute of Cable Industry, Moscow, Russia, irovchinnikova@gmail.com
Nadezhda A. Shishova, Moscow Technical University of Communications and Informatics, Moscow, Russia, n.a.shishova@mtuci.ru

 

Abstract
The article introduces and applies the parameter P – factor of parallelism, gives expressions for calculating the spectral efficiency and data transfer rate, provides examples of the implementation of spatial parallelism. Parallelism of information transmission in optical fibers is carried out through the use of polarization, spectral, mode, core multiplexing with multiplexing coefficients – parallelism multipliers Pi. The multiplier of spatial parallelism of Psp corresponds to the number of spatial channels created by methods and means of mode and core multiplexing. Elementary, complex and integral parallelism multipliers allow estimating the bandwidth of optical fiber, including software-configurable optical networks with a choice of route, modulation format, spectrum width, fiber cores involved. The spatial parallelism multiplier in optical fiber as part of an optical cable which is integrated in a fiber-optic transmission system is used to calculate the values of the spectral efficiency components and the aggregated data rate. The spectral efficiency components are formed by comparing the result and resource of the optical fiber bandwidth shaping operation. Expressions are given to calculate the spectral efficiency and to determine the transmission rate in the conditions of optical signals propagation spatial parallelism realization.

Keywords: the parallelism of information transfer, concurrency multiplier, spatial multiplexing, spectral efficiency, data rate.

References

1. Winzer P.J., Neilson D.T., Chraplyvy A.R. (2018). Fiber-optic transmission and networking: the previous 20 and the next 20 years. Optics express, vol.26, no. 18, pp. 24190-24239.
2. Efimushkin V.A., Kozachenko Y.M., Ledovskikh T.V., Shcherbakova E. N. (2018). Budushij oblik Edinoj seti elektrosvyazi Rossijskoj Federacii [Future appearance of the Unified Telecommunication Network of the Russian Federation], Electrosvyaz, no. 10, pp. 18-27.
3. Parfenov B.A. (2019). Kak vnedryaem zyfru [As we introduce figure], Vestnik Sviazy, no. 9, pp. 29-35.
4. Peshkov I.B. (2019). Kabel’naya promyshlennost’ v usloviyah stanovleniya nacional’noj cyfrovoj ekonomiki [The cable industry as the national digital economy grows], Kabely I Provoda, no. 2, pp. 20-24.
5. Korshunov V.N., Shavrin S.C., Shishova N.A. (2017). Skorost’ VOSP pri kompleksnom mul’tipleksirovanii [Speed of FLOT in complex multiplexing], Vestnik Sviazy, no. 10, pp. 22-24.
6. Korshunov V.N., Ovchinnikova I.A. (2018). Primenenie prostranstvennogo mul’tipleksirovaniya pri peredache informacii po opticheskim kabelyam [Application of spatial multiplexing when transmitting information over optical cables], Kabely I Provoda, no. 1, pp. 12-18.
7. Abedifar V., Eshghi M. (2019). Routing, modulation format, spectrum and core allocation in space-division-multiplexed programmable fetterless networks. Optical fiber technology, no. 49, pp. 37-49.
8. Bosco G. (2019). Advanced modulation techniques for flexible optical transceivers: the rate/reach tradeoff. Journal of Lightwave Technology, v.37, no 1. pp. 36-49.
9. Rademacher G. et al. (2019). High capacity transmission with few-mode fibers. J. lightw. technol, v.37, no. 2. pp. 425-432.
10. Igarashi K. (2016). Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers. Opt. express, v.24, no. 10, pp. 10213-10231.
11. Korshunov V.N., Ovchinnikova I.A. (2018). Spektral’naya i prostranstvennaya effektivnost’ vysokoskorostnoj peredachi informacii po opticheskim voloknam [Spectral and spatial efficiency of high-speed transmission of information over optical fibers], Electrosvyaz, no. 5, pp. 61-65.
12. Korshunov V.N., Ovchinnikova I.A., Shavrin S.S., Shishova N.A., Tsym A.Y. (2019). Spectral efficiency of fiber – optic systems modifying conception advance, Systems of signals generating and processing in the field of on board communications, march 20-21. Moscow. Russia.
13. Nadezhnost’ i jeffektivnost’ v tehnike [Reliability and efficiency in engineering], Handbook in 10 volumes, Efficiency of technical systems. Moscow: Mashinostroenie, (1988).
14. Konyshev V., Naniy O., Treshchikov V. (2019). Razvitie volokonno-opticheskih informacionnyh setej DWDM DCI [Development of DWDM DCI fiber optic information networks]. Pervaya milya, no. 4, pp. 46-50.

Information about authors:

Vladimir N. Korshunov, Moscow Technical University of Communications and Informatics, full doctor of technical science, professor of the «Telecommunication Systems» chair, Moscow, Russia
Irina A. Ovchinnikova, All-Russian Research Institute of Cable Industry, Director of Scientific Direction – Head of the Department of Cables and Wires for Telecommunications and Informatization, candidate of sciences in technology, Moscow, Russia
Nadezhda A. Shishova, Moscow Technical University of Communications and Informatics, PhD, associate professor, head of the «Telecommunication Systems» chair, Moscow, Russia