+7 (495) 957-77-43

T-Comm_Article 2_3_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Mikhail G. Bakulin, Ph.D., MTUCI, Moscow, Russia, m.g.bakulin@gmail.com
TaoufikBen Rejeb, MTUCI, Moscow, Russia, t.benrejeb@mtuci.ru
Vitaly B. Kreyndelin, Dr.Sc., MTUCI, Moscow, Russia, vitkrend@gmail.com
Aleksei E. Smirnov, MTUCI, Moscow, Russia, smirnov.al.ed@gmail.com

Multiple antenna systems MIMO (Multiple input multiple output) are widely used in LTE-Advanced mobile systems and in the IEEE 802.11 radioaccess standards. In the international standard of 3GPP for mobile communication systems 5G New Radio (Release 15), MIMO systems are regulated as a fundamental technology of the new Air interface. In this paper, we consider algorithms for quantization of information about the channel state using Grassmann manifolds, which significantly reduce the amount of channel state information required for transmission. The results of computer simulation allow to evaluate the noise immunity of precoding algorithms based on Grassmannian manifold quantization.

Keywords: MIMO, precoding, Grassmannian manifold, quantization, metrics.


1. M.G. Bakulin, L.A. Varukina, V.B. Kreyndelin (2014). MIMO technology: principles and algorithms. Moscow: Hotline – Telecom. 244 p.
2. V. Kreyndelin, A. Smirnov, T. Ben Rejeb (2018). Effective precoding and demodulation techniques for 5G communication systems. Proc. Systems of Signals Generating and Processing in the Field of on Board Communications. P. 1-6.
3. Q N. Quoc-Tuong (2012). Ganaralisation des procodeurs MIMO basis sur la distance euclidienne minimale. Signal and Image processing. University Rennes 1. 176 p.
4. E. Bjornson, K. Ntontin and B. Ottersten (2011). Channel quantization design in multiuser MIMO systems: Asymptotic versus practical conclusions. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague. P. 3072-3075.
5. V.S. Kulikov (2013). Geometry of the Grassmannian G (2,4). Ivan Fedorov Moscow State University of Printing Arts. Bulletin of MGUP im. Ivana Fedorov. No.2. P. 7-31.
6. V.B. Kreyndelin, T.B.K. Ben Rejeb (2017). Nonlinear iterative precoding algorithm for MIMO multiuser systems. Radioelectronics and Communications Systems. Vol. 60. No. 10. P. 449-457.
7. D.J. Love, R.W. Heath, Jr., and T. Strohmer (2003). Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems. IEEE Trans. on Info. Theory special issue on MIMO Communication. Vol. 49. P. 2735-2747.
8. A. Medra, T. Davidson (2012). Flexible codebook design for limited feedback downlink systems via smooth optimization on the grassmannian manifold. IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). P. 50-54.
9. D.R. Brown III, D.J. Love (2014). MIMO Nullforming with RVQ Limited Feedback and Channel Estimation Errors. Proceedings of the 48th Asilomar Conference on Signals, Systems, and Computers. P. 983-987.
10. Brijesh Kumbhani Rakhesh Singh Kshetrimayum, MIMO Wireless Communications over Generalized Fading Channels. USA, NW, CRC Press 2017. 290 p.
11. V.B. Kreyndelin, A.E. Smirnov, T.B.K. Ben Rejeb (2016). Efficiency of Signal Processing Techniques in High Order MU-MIMO Systems. T-Comm. Vol 10. No.12. P. 24-30.
12. Athanasios G. Kanatas, Konstantina S. Nikita, Panagiotis Mathiopoulos (2018). New Directions in Wireless Communications Systems. From Mobile to 5G — USA, NW, CRC Press. 563 p.

Information about authors:

Mikhail G. Bakulin, Ph.D., associate prof., MTUCI, Moscow, Russia
Taoufik Ben Rejeb, Ph.D., associate prof., MTUCI, Moscow, Russia
Vitaly B. Kreyndelin, Dr.Sc., head of department, professor, MTUCI, Moscow, Russia
Aleksei E. Smirnov, Ph.D., associate prof., MTUCI, Moscow, Russia