ON AUTONOMOUS AND SMART SHIPS: CHALLENGES AND BENEFITS FOR COMPUTE SCIENCES AND TELECOMMUNICATIONS
DOI: 10.36724/2072-8735-2020-14-11-46-56
Ivan A. Yanchin, Saint-Petersburg State Marine Technical University, St. Petersburg, Russia, yanchin@pm.me
Oleg N. Petrov, Saint-Petersburg State Marine Technical University, St. Petersburg, Russia, petr_oleg@mail.ru
Abstract
The paper is dedicated to the overview of the autonomous ship onboard control system functionality. The paper is dedicated to autonomous maritime navigation, i.e. to planning a safe and optimal route for an autonomous ship amid the absence of crew on board and to handling an autonomous ship when underway, ensuring seaworthiness and route correctness. Moreover, the paper describes communications of several autonomous ships and autonomous and ordinary ships to infer a collective decision on how to pass safely through a particular area. Since it is expected that autonomous ships are going to be equipped with dozens of sensors and detectors, the paper describes remote monitoring of an autonomous ship when underway. Since an autonomous ship highly depends on its onboard control system, the paper also pays attention to the robustness of the system. The paper suggests evolutionary computations as a solution for the route planning problem because this approach enables to perform multicriteria optimization of a set of solutions simultaneously. For autonomous ship handling and seaworthiness control, the paper suggests machine learning techniques because these techniques can solve problems in case of uncertainty and the environmental mutability. For inter-ship communications, the paper suggests distributed consensus algorithms, widely used in parallel and distributed computation systems. To ensure the onboard control system robustness, the paper suggests the actor approach that represents that the entire software system consists of a set of elementary agents communicating in the distributed computational environment.
Keywords: autonomous ships, maritime navigation, seaworthiness, ship control systems, machine learning.
References
1. Vojtkunskaya A. YA. & Zvyagin P. N. (2018), Marshrutizaciya sudna v drejfuyushchem l’du, ‘Morskie Intellektual’nye Tekhnologii. Trudy Sankt-Peterburgskogo gosudarstvennogo morskogo tekhnicheskogo universiteta’, Vol. 2 (40) T. 1, pp. 166-172.
2. Dmitriev V. I. & Karetnikov V. V. (2017), ‘Metody obespecheniya bezopasnosti moreplavaniya pri vnedrenii bespilotnyh tekhnologij’, Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, pp. 1149-1158.
3. Karetnikov V. V., Pashchenko I. V. & Sokolov A. I. (2017), ‘Perspektivy vnedreniya bezekipazhnogo sudohodstva na vnutrennih vodnyh putyah Rossijskoj Federacii’, Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, pp. 619-627.
4. Nechaev Yu. I. (2011), Teoriya katastrof: sovremennyj podhod pri prinyatii reshenij. Sankt-Peterburg: Art-Ekspress.
5. Nechaev Yu. I. & Petrov O. N. (2020), ‘Intellektual’naya tekhnologiya kontrolya dinamicheskoj nepotoplyaemosti bespilotnogo sudna’, Morskie Intellektual’nye Tekhnologii. Trudy Sankt- Peterburgskogo gosudarstvennogo morskogo tekhnicheskogo universiteta. 3(1), pp. 133-138.
6. Pinskij A. S. (2016), ‘E-Navigaciya i bezekipazhnoe sudovozhdenie’, Transport Rossijskoj Federacii. Zhurnal O Nauke, Praktike, Ekonomike, pp. 50-54.
7. Suslov A. N, Odegova O. V. & Sun’ Tyan’shi. (2020), ‘O podhodah k sozdaniyu sistemy avtomatizirovannogo monitoringa ostojchivosti sudna’, Morskie Intellektual’nye Tekhnologii. Trudy Sankt-Peterburgskogo gosudarstvennogo morskogo tekhnicheskogo universiteta, 3(1), pp. 72-74.
8. Yanchin I. A. (2020), ‘Analiz navigacionnoj avarii s ispol’zovaniem apparata sovremennoj teorii katastrof’, Morskie Intellektual’nye Tekhnologii. Trudy Sankt-Peterburgskogo gosudarstvennogo morskogo tekhnicheskogo universiteta. 3(1), pp. 139-144.
9. A. Castro et al. Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing. 2014. Vol. 23. P. 194-201.
10. Hassani A. & Treijs J. (2009), ‘An overview of standard and parallel genetic algorithms’, IDT workshop on interesting results in computer science and engineering, pp. 1-7.
11. Balci O. (1994), ‘Validation, verification, and testing techniques throughout the life cycle of a simulation study’, Annals of Operations Research 53(1), 121-173. URL: https://doi.org/10.1007/BF02136828
12. Balci O. (1998), Verification, validation, and accreditation, in ‘Proceedings of the 30th Conference on Winter Simulation’, WSC ’98, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 41-48. URL: http://dl.acm.org/citation.cfm?id=293172.293183
13. Benson C., Sumanth P. & Colling A. P. (2018), A quantitative analysis of possible futures of autonomous transport. INEC 2018 Conference, pp. 1-12.
14. Bergdahl L. (2009), ‘Comparison of measured shallow-water wave spectra with theoretical spectra’, Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009, pp. 100-105.
15. Bernstein P., Bykov S., Geller A., Kliot G. & Thelin J. (2014), ‘Orleans: Distributed virtual actors for programmability and scalability’, pp. 1-13.
16. Blanke M., Henriques M. & Bang J. (2016), ‘A pre-analysis on autonomous ships’, Technical University of Denmark pp. 1-27.
17. Che Z., Purushotham S., Cho K., Sontag D. & Liu Y. (2018), ‘Recurrent neural networks for multivariate time series with missing values’, Scientific Reports 8(1), pp. 1-14. URL: https://doi.org/10.1038/s41598-018-24271-9
18. Cormen T.H., Leiserson C.E., Rivest R.L. & Stein C. (2009), Introduction to Algorithms, MIT Press and McGraw-Hill.
19. Cross J.F. & Meadow G. (2017), ‘Autonomous ships 101’, Journal of Ocean Technology. Vol 12, pp. 23-27.
20. Silver D., Hubert T., Schrittwieser J., Antonoglou,I., Lai,M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T. P., Simonyan K. & Hassabis D. (2017), ‘Mastering chess and shogi by self-play with a general reinforcement learning algorithm’, CoRR abs/1712.01815, 1-19. URL: http://arxiv.org/abs/1712.01815
21. Ongaro D. & Ousterhout J. (2014), In search of an understandable consensus algorithm, in ‘2014 USENIX Annual Technical Conference (USENIX ATC 14)’, USENIX Association, Philadelphia, PA, pp. 305-319. URL: https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
22. Dominik Charousset et al. Native Actors — A Scalable Software Platform for Distributed, Heterogeneous Environments. Proc. of the 4rd ACM SIGPLAN Conference on Systems, Programming, and Applications (SPLASH ’13), Workshop AGERE! 2013. P. 87-96.
23. E. Cantu-Paz. A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis. 1998. No. 10. P. 1-30.
24. Global Maritime Engineering. (n.d.), ‘Hull Stress Monitoring System Electric Sensors’ Solution. Measure stresses, torsions, caused by Waves, Cargo Operations and Motions.’. URL: http://gmeng.com/sub/gme_hsmses_catalog.pdf.
25. Grifoll M., Martinez de Osis F. X. & Castells M. (2018), ‘Potential economic benefits of using a weather ship routing system at short sea shipping’, WMU Journal of Maritime Affairs 17(2), pp. 195-211. URL: https://doi.org/10.1007/s13437-018-0143-6
26. Hasselmann K., Barnett T., Bouws E., Carlson H., Cartwright D., Enke K., Ewing J., Gienapp H., Hasselmann D., Kruseman P., Meerburg A., Muller P., Olbers, D., Richter, K., Sell, W. & Walden, H. (1973), ‘Meas-urements of wind-wave growth and swell decay during the joint north sea wave project (jonswap)’, Deut. Hydrogr. Z. 8, pp. 1-95.
27. Hinnenthal Jorn, Harries Stefan. A Systematic Study on Posing and Solving the Problem of Pareto Optimal Ship Routing. 3rd In-ternational Conference on Computer and IT Applications in the Maritime Industries. 2004. P. 27-36.
28. Holland J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975. P. 183.
29. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016. P. 775.
30. Irpan A. Deep Reinforcement Learning Doesn’t Work Yet. https://www.alexirpan.com /2018/02/14/rl-hard.html, 21.06.2020.
31. Lamport L. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM. Association for Computing Machinery, 1978. Vol. 21, no. 7. P. 558-565.
32. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. SN, 2015. Vol. 521. P. 436 EP.
33. Manel Grifoll et al. Ship weather routing using pathfinding al-gorithms: the case of Barcelona — Palma de Mallorca. XIII Congreso de Ingenieria del Transporte. 2018. P. 1-11.
34. Masoud Nosrati, Ronak Karimi, Hojat Allah Hasanvand. In-vestigation of the * (Star) Search Algorithms: Characteristics, Methods and Approaches. World Applied Programming. 2012. Vol. 2, no. 4. P. 251-256.
35 McKee H., White O. Akka A to Z. An Architect’s Guide To Designing, Building, And Running Reactive Systems. Lightbend, Inc., 2018. P. 35.
36. MUNIN Project. Research in maritime autonomous systems project results and technology potentials. 2016. P. 1-12.
37. Nikitakos N. Fourth Industrial Revolution in Maritime Sector. University of the Aegean. 2019. P. 1-89.
38. Perera L. Deep Learning towards Autonomous Ship Naviga-tion and Possible COLREGs Failures. Journal of Offshore Mechanics and Arctic Engineering. 2019.
39. Leigh R., Louis S.J., Miles C. Using a Genetic Algorithm to Explore A*-like Pathfinding Algorithms. 2007 IEEE Symposium on Computational Intelligence and Games. 2007. P. 72-79.
40. Rolls-Royce Ship Intelligence. Autonomous ships. The next step. Rolls-Royce Marine. 2016. P. 1-8.
41. Shao W., Zhou P., Thong S.K. Development of a novel forward dynamic programming method for weather routing. Journal of Marine Science and Technology. 2012. Vol. 17, no. 2. P. 239-251.
42. Silver D. et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016. Vol. 529, ¹ 7587. P. 484-489.
43. Simonsen M. H. et al. State-of-the-Art Within Ship Weather Routing. ASME 2015 34th International Conference on Ocean, Off-shore and Arctic Engineering. 2015. P. 11.
44. Takashima K., Mezaoui B., Shoji R. On the Fuel Saving Oper-ation for Coastal Merchant Ships using Weather Routing. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation. 2009. Vol. 3. P. 401-406.
45. Vinyals O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2019. Vol. 575, No. 7782. P. 350-354.
46. Wartsila. Stress monitoring system, hull stress surveillance system . https://www.wartsila.com/encyclopedia/term/stress-monitoring-system-hull-stress-surveillance-system: 21.06.2020.
47. Wang L., Li Y., Lazebnik S. Learning Two-Branch Neural Networks for Image-Text Matching Tasks. CoRR. 2017. Vol. abs/1704.03470. P. 1-17.
48. Yang H., Pan Z., Tao Q. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory. Computational Intelligence and Neuroscience. 2017. Vol. 2017. P. 1-9.
49. Abdullah Konak, David W. Coit, Alice E. Smith. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety. 2006. Vol. 91, ¹ 9. P. 992-1007.
Information about authors:
Ivan A. Yanchin, Postgraduate student, Saint-Petersburg State Marine Technical University, St. Petersburg, Russia
Oleg N. Petrov, Associate professor, PhD, associate professor, Saint-Petersburg State Marine Technical University, St. Petersburg, Russia