+7 (495) 957-77-43

T-Comm_Article 2_10_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

UWB DIGITAL RECEIVER DESIGN METHODOLOGY WITH SUB-NYQUIST SAMPLING

Alexey S. Podstrigaev, Saint Petersburg Electrotechnical University «LETI», Petersburg, Russia, ap0d@ya.ru

Abstract
UWB digital receiver design methodology with sub-Nyquist sampling In radio monitoring and cognitive radio tasks, processing of overlapped signals in an ultra-wide frequency band without gaps is required. A digital receiver with sub-Nyquist sampling allows solving this problem. However, in practice, we have some issues. There are various kinds of ambiguity in determining the frequency. The nonlinear elements of the path generate parasitic harmonics of the input signal. In the multi-signal mode, the discrimination of signals deteriorates. All this significantly reduces the efficiency of signal analysis. Therefore, a receiver circuit with software implemented means of eliminating the listed disadvantages is proposed. Such a receiver has features characteristic of sub-Nyquist sampling and selectable parameters. A special technique has been developed to systematize the design process of the receiver. The design methodology takes into account the use of the receiver in single-signal and multi-signal modes. The result of the design is the receiver block diagram with a justification of the parameters of its main elements. The proposed methodology makes it possible to evaluate system characteristics such as sensitivity, the number of processing channels and the throughput by the number of superimposed signals. Automation of checking the conditions given in the methodology can significantly increase the speed and convenience of design. It is shown that for the Gigabit Ethernet interface, the throughput of the receiver is about eight superimposed pulse or continuous signals. In this case, due to parasitic components arising in the nonlinear elements of the path, it can be reduced to 4 superimposed signals. The actual number of processed signals is also determined by the probability of their overlap, and when receiving pulsed signals, it can be much higher.

Keywords: sub-Nyquist receiver, undersampling receiver, undersampling, wideband receiver, digital receiver, receiver design methodology.

References

1. Ju.P. Mel’nikov and S.V. Popov (2009), «Methods for evaluating the effectiveness of a wide-range multichannel-functional («matrix») receiver with multistage frequency conversion», Jelektromagnitnye volny i jelektronnye sistemy. Vol. 14. No. 3. Pp. 52-61.
2. A.S. Podstrigaev, V.P. Lihachev, M.V. Ljapin, and N.E. Lipakov (2015), «Analysis of the probabilistic characteristics of the matrix receiver taking into account the ambiguity of determining the frequency at the channel junctions». Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki. No. 4 (38). Pp. 17-25.
3. N. Egorov and V. Kochemasov (2017), «Instant Frequency Measurement: Methods and Tools». Jelektronika: NTB. No. 5. Pp. 136-141. DOI: 10.22184/1992-4178.2017.165.5.136.141
4. R. Praneetha, VVSRN Raju, Rao E. Sreenivasa, and A.K. Singh (2015), «Simulation and Verification of Digital Delay based Instantaneous Frequency Measurement Technique for Electronic Warfare receivers», International Journal of Recent Advances in Engineering & Technology (IJRAET), vol. 3, issue 9, pp. 7-14.
5. S.F. Atkishkin (2021), «Model of instantaneous frequency measurement receiver with preliminary frequency multiplication and auxiliarychannel based on nonlinear scattering parameters», T-Comm, vol. 15, no. 3, pр. 40-49. DOI 10.36724/2072-8735-2021-15-3-40-49.
6. J.B.Y. Tsui, J.J. Schamus, and D.H. Kaneshiro (1997), «Monobit receiver», IEEE MTT-S International Microwave Symposium Digest, IEEE, vol. 2, pp. 469-471.
7. Ju.T. Karmanov, A.N. Nikolaev, Ja.G. Zelencova, S.V. Povaljaev, and I.I. (2014), «Application of monobit digital technology for processing radio signals in wide-range radio electronic systems», Vestnik JuUrGU. Ser. «Komp’juternye tehnologii, upravlenie, radiojelektronika». Vol. 14. No. 3. Pp. 11-18. URL: https://dspace.susu.ru/xmlui/handle/0001.74/4860
8. A.N. Nikolaev (2012), «Digital technologies in wideband microwave receivers», Vestnik JuUrGU. Serija «Komp’juternye tehnologii, upravlenie, radiojelektronika». Vol. 17. No. 35 (294). Pp. 30-34. URL: https://vestnik.susu.ru/ctcr/article/view/644
9. R.B. Sanderson and J.B.Y. Tsui (1992), Digital frequency measurement receiver with bandwidth improvement through multiple sampling of real signals, US, Pat. 5109188.
10. R.B. Sanderson and J.B.Y. Tsui (1992), Digital frequency measurement receiver with bandwidth improvement through multiple sampling of complex signals, US, Pat. 5099243.
11. R.B. Sanderson and J.B.Y. Tsui (1992), Instantaneous frequency measurement receiver with bandwidth improvement through phase shifted sampling of real signals, US, Pat. 5109188.
12. W.S. McCormick and J.B.Y. Tsui (1994), Frequency measurement re-ceiver with means to resolve an ambiguity in multiple frequency estimation, US, Pat. 5293114.
13. G.P. Beharrell (2013), Digital electronic support measures, Pat. EP № 1618407.
14. A.N. Krenev, V.A. Botov, I.S. Gorjuncov, D.S. Pogrebnoj, and V.K. Toporkov (2014), Method for extending the bandwidth of the estimation of signal spectra, RU, Pat. 2516763.
15. S. Huang, H. Zhang, H. Sun, L. Yu, and L. Chen (2017), «Frequency estimation of multiple sinusoids with three sub-Nyquist channels», Signal Processing, No. 139. Pp. 96-101. doi: 10.1016/j.sigpro.2017.04.013
16. V.A. Botov, I.S. Gorjuncov, D.S. Pogrebnoj, A.N. Krenev, and V.K. Toporkov (2013), «Method for expanding the frequency band of detecting radio signals in the spectral region», Sistemy sinhronizacii, formirovanija i obrabotki signalov. No. 2(4). Pp. 122-124
17. V.A. Lesnikov, T.V. Naumovich, A.V. Chastikov, and D.G. Garsh (2016), «Reconstruction of the spectrum of a signal distorted by undersampling», DSPA: Voprosy primenenija cifrovoj obrabotki signalov. No. 2(6). Pp. 239-243.
18. D.V. Kondakov, A.N. Kosmynin, and A.P. Lavrov (2017), «Algorithm for estimating the frequencies of a multicomponent signal in a digital receiver with downsampling», XXIII mezhdunarodnaja nauchno-tehnicheskaja konferencija «Radiolokacija, navigacija, svjaz'», Vol. I. Pp. 481-486.
19. D.V. Kondakov and A.P. Lavrov (2019), «Determination of the frequency spectrum of a multicomponent radio signal in a digital receiver with undersampling», Radiotehnika. No. 9(13). Pp. 20-26. doi: 10.18127/j00338486-201909(13)-02.
20. V.A. Lesnikov, T.V. Naumovich, and A.V. Chastikov (2020), «Reconstruction of an analytical signal distorted by first-order aliasing», Sb. trudov IX Vserossijskoj nauchno-tehnich. konf. «Problemy razrabotki perspektivnyh mikro- i nanojelektronnyh sistem — 2020», No 3. Pp. 194-200.
21. C. Liu, K. Chen, J. Zhang, Y. Wang, H. Wang (2019), «Using FFT to reduce the computational complexity of sub-Nyquist sampling based wideband spectrum sensing», Journal of Physics: Conference Series. No. 1237. doi: 10.1088/1742-6596/1237/2/022004
22. Mini-Circuits (1999), «AN0-39. Stepped Frequency Measurement Im-prove IM Testing», available at: https://www.minicircuits.com/app/AN0-39.pdf. (Accessed 14 May 2021).
23. https://www.analog.com/ (Accessed 14 May 2021).
24. A.S. Podstrigaev (2016), «Influence of nonlinearity of microwave path elements on the occurrence of ambiguity in determining the frequency in a broadband matrix receiver», Sovremennye problemy proektirovanija, proizvodstva i jekspluatacii radiotehnicheskih sistem. No. 1 (10). Pp. 147-150.
25. https://www.analog.com/media/en/technical-documentation/data-sheets/hmc661.pdf (Accessed 14 May 2021).
26. R.G. Lyons (2004), Understanding digital signal processing, 3/E. Pearson Education India.
27. A.S. Podstrigaev, A.V. Smolyakov, I.V. Maslov (2020), «Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity», Journal of the Russian Universities. Radioelectronics. No. 23(5). Pp. 37-45. doi: 10.32603/1993-8985-2020-23-5-37-45.
28. A.S. Podstrigaev (2021), «Improving the efficiency of a matrix receiver in a complex signal environment based on a fiber optic delay line», Trudy MAI. No. 116. 24 p. doi: 10.34759/trd-2021-116-08.

Information about author:

Alexey S. Podstrigaev, doctoral student, associate professor of the Department of Radio-Electronic Means, Cand. Sci. (Eng.), Saint Petersburg Electrotechnical University «LETI»,
St. Petersburg, Russia