+7 (495) 957-77-43

T-Comm_Article 3_10_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

SIMULATION MODEL OF AUTONOMOUS POWER PLANT BASED ON STABILIZING VOLTAGE CONVERTERS

Kirill M. Sidorov, Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia, k.sidorov@bk.ru
Baurzhan K. Ospanbekov, Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia,  baurzhanospanbekov@gmail.com
Aleksandr G. Grishchenko, Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia, alex.g182@yandex.ru
Vladimir I. Stroganov, Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia, v.stroganov-madi@mail.ru
Vladimir E. Yutt, Moscow Automobile and Road Construction State Technical University (MADI), Moscow, Russia, ioutt@mail.ru

Abstract
Improving the fuel, economic and environmental indicators of the process of generating electrical energy is an urgent problem of small-scale power generation, due to a significant share of traditional solutions based on diesel generator sets, which are not highly efficient in the overall structure of primary fuel use (including the stages of production, transportation and final transformation). At the same time, the modern development of technologies in the field of promising energy sources and power electronics contributes to the sustainable diversification of energy resources, strengthening the position of environmentally friendly renewable energy. However, the use of alternative types of fuels for variable speed engine generators, photovoltaic and wind power plants is associated with the need to use additional devices for converting electrical energy – stabilizing voltage converters. This article is devoted to issues related to the design of autonomous power systems based on these voltage converters using mathematical modeling tools. The paper describes a complex mathematical model of an autonomous power plant with a variable speed motor-generator and an electric energy storage device, presents a mathematical description of the main components of such a system, and also provides examples of the model implementation in a specialized software environment. A distinctive feature of the proposed model is an approach to modeling the operating modes of an engine-generator set, which is a synthesis of multi-parameter characteristics of an internal combustion engine, analytical expressions for energy storage and conversion systems. The presented complex model makes it possible to determine the electrical, energy and environmental indicators of autonomous power plants when the power of the electrical load changes. The article provides an example of the nature of the results obtained in computer modeling.

Keywords:Autonomous power plant, power supply, voltage converter, energy storage, simulation.

References

1. O.S. Khvatov, A.B. Daryenkov, I.S. Samoyavchev and V.V. Sokolov (2015), «Electric power stations of autonomous objects based on a variable speed diesel generator sets», Transactions of NNSTU n.a. R.E. Alekseyev, Vol. 109, No. 2, pp. 217-225. (in Russian)
2. K.M. Tun and W. Swe (2017), «Frequency control of stand alone wind-diesel hybrid system», International Journal for Innovative Research in Multidisciplinary Field, Vol. 3, No. 4, pp. 131-135.
3. P. Denholm, E. Ela, B. Kirby, and M. Milligan (2010), Role of Energy Storage with Renewable Electricity Generation, NREL, Colorado.
4. A.A. Gorev (1985), Perekhodnye Protsessy Sinhronnoy Mashiny, Nauka, Leningrad. (in Russian)
5. M. Brezovac, I. Kuzle and M. Krpan (2015), «Detailed mathematical and simulation model of a synchronous generator», Journal of Energy, Vol. 64, Special Issue, pp. 102-129.
6. G.Ya. Vagin, E.B. Solntsev, A.M. Mamonov and A.A. Petrov (2015), «Mathematical model of salient pole synchronous generator of Mini-CHP», Inzhenernyj vestnik Dona, No. 2-2 (36), 33 p. (in Russian)
7. C.M. Shephard (1965), «Design of primary and secondary cells: An equation describing battery discharge», J. Electrochem. Soc., Vol. 112, Issue 3, pp. 252-257.
8. G.A. Sipailov, V.A. Zorin, T.V. Kuznetsova and A.B. Tsukublin (1966), «Some problems of the operation of a low-power synchronous generator with a rectifying load», Bulletin of the Tomsk Polytechnic University, Vol. 145, No. 23, pp. 140-150. (in Russian)
9. A. Reznik, M. Godoy Simes, Ahmed Al-Durra and S.M. Muyeen (2014), «LCL Filter Design and Performance Analysis for Grid Interconnected Systems», IEEE Transactions on Industry Applications, Vol. 50, Issue 2, pp. 1225-1232.
10. K.H. Gulyamov, A.H. Gulomzoda. Development and investigation of increasing converter of conconstant voltage. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2017. No. 4 (51). P. 55-61.
11. M.Yu. Karelina, I.V. Arifullin, Ph.D., A.V. Terentiev. Analytical determination of weight factors for a multicrystalline estimation of efficiency of automobile vehicles. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2018. No. 1 (52). P. 3-9.
12. O.N. Dolina, М.А. Zhidkova, T.A. Shpilkina, E.U. Ahmetzhanova. Implementation of the import substitution policy in the automotive industry. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2017. No. 2 (49). P. 22-28.
13. A.V. Puzakov, Ya.Yu. Osaulko. Research of influence of operational factors on the thermal condition of the automotive alternator. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2018. No. 1 (52). P. 16-23.
14. C.G. Nadaraia, A.I. Selivanov, I.J. Shestakov, A.A. Fadeev, L.A. Chemical-kinetic energy storage and a gear motor for electric vehicle. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2017. No. 1 (48). P. 12-17.
15. A.N. Kozlov. Organization of safe operation of traction lithium-ion battery on the vehicle. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2016. No. 1 (44). P. 14-19.
16. T.E. Mel’nikova, S.E. Mel’nikov, V.V. Zavyazkina. Electric vehicles: prospects and ways of development. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2019. No. 3 (58). P. 22-26.
17. N.O. Bludyan. Prospects for the development of electric buses. Vestnik Moskovskogo avtomobil’no-dorozhnogo instituta (gosudarstvennogo tehnicheskogo universiteta). 2020. No. 3 (62). P. 19-24.

Information about authors:

Kirill M. Sidorov, associate professor, MADI, Moscow, Russia
Baurzhan K. Ospanbekov, associate professor, MADI, Moscow, Russia
Aleksandr G. Grishchenko, senior lecturer, MADI, Moscow, Russia
Vladimir I. Stroganov, chief of the Department of Electrical Engineering and Electric Equipment, MADI, Moscow, Russia
Vladimir E. Yutt, professor, MADI, Moscow, Russia