+7 (495) 957-77-43

T-Comm_Article 4_10_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

ANALYSIS OF MODERN STANDARD APPLICATION METHODS OF SOFTWARE-DEFINED NETWORK IN 5G/IMT-2020

B. Daneshmand, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Abstract
The paper considers the application of SDN technology in 5G / IMT-2020 networks, namely, answers to the questions: What is SDN technology used for in 5G / IMT-2020 networks; How is SDN technology used in 5G / IMT-2020 networks; What is the role of SDN technology in 5G / IMT-2020 networks; What are the functions of SDN technology in 5G / IMT-2020 networks etc. But before that, it describes what SDN is and what 5G / IMT-2020 is. The paper describes and analyzes the methods of using SDN technology in fifth generation networks in terms of the function and role that SDN plays in these networks. Usually in the literature, this information exists in a scattered form, and sometimes some methods of application are either very superficially described, or not described at all, or they are tied to other methods. The aim of the work is to identify and analyze well-established methods of using SDN in 5G / IMT-2020 networks. To identify SDN applications in 5G / IMT-2020 networks, SDN architecture, SDN benefits, overall 5G / IMT-2020 network architecture, 5G / IMT-2020 standards and requirements, network protocols were studied and analyzed 5G / IMT-2020, some existing and future likely 5G / IMT-2020 network services, general concepts of some future networks such as tactile internet, internet skills, model networks, etc. The paper provides a radial diagram of the ways (options) of using SDN in 5G / IMT-2020 and describes each option.

Keywords:5G / IMT-2020, SDN, communication network, software-defined network, virtualization, use of SDN, SDN controller, network equipment, technology.

References

1. Recommendation ITU-T Y.3101 «Requirements of the IMT-2020 network», 2018.
2. 3GPP TS 22.261 V16.5.0 «Service requirements for the 5G system», фаза 1, релиз 16, сентябрь 2018 г.
3. 3GPP TS 23.501 V15.0.0 «System Architecture for the 5G System», Release 15, 2018-09.
4. Abdelmotaleb Abdelhamid Ashraf Athea (2019). Research and development of methods for constructing communication networks of the fifth generation 5G, ensuring the fulfillment of the requirements of the concepts of the tactile Internet. SPbSUT named after Professor M. A. Bonch-Bruevich. Thesis. St. Petersburg.
5. A. S. Borodin (2019). Development and research of methods for constructing communication networks of the fifth generation. SPbSUT named after Professor M. A. Bonch-Bruevich. Thesis. Saint Petersburg.
6. Muhizi Samuel (2019). Development of models and methods of resource segmentation in software-defined networks. SPbSUT named after Professor M. A. Bonch-Bruevich. Thesis. Saint Petersburg.
7. E. V. Salomatina (2019). Development of models of telecommunication information and management networks and methods of their effective use. Scientific research institute of radio. Thesis. Moscow.
8. S. V. Galich (2018). Research and analysis of control traffic processing delay in software-defined networks. Volgograd state university. Thesis. Volgograd.
9. Javier Guillermo (2019). How 5G Relates to SDN and NFV Technologies — Part I: Introduction and History. DELL Technologies, 2019. https://infocus.delltechnologies.com/javier_guillermo/how-5g-relates-to-sdn-and-nfv-technologies-part-i-introduction-and-history/ . (Дата обращения 23.08.2020)
10. Javier Guillermo (2019). How 5G Relates to SDN and NFV Technologies — Part II: Architecture. DELL Technologies, 2019 https://infocus.delltechnologies.com/javier_guillermo/how-5g-relates-to-sdn-and-nfv-technologies-part-ii-architecture /. (Дата обращения 23.08.2020)
11. Javier Guillermo (2019). How 5G Relates to SDN and NFV Technologies — Part III: Architecture (Continued). DELL Technologies, 2019 https://infocus.delltechnologies.com/javier_guillermo/how-5g-relates-to-sdn-and-nfv-technologies-part-iii-architecture-continued/ . (Дата обращения 23.08.2020)
12. Z. Zaidi, V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler and H. Aghvami (2018), «Will SDN Be Part of 5G?,» in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3220-3258, Fourthquarter 2018, doi: 10.1109/COMST.2018.2836315.
13. Massimo Condoluci, Toktam Mahmoodi (2018). Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges. Computer Networks, Vol. 146, 9 December 2018, P. 65-84. https://doi.org/10.1016/j.comnet.2018.09.005
14. A.A. Barakabitze, A.Ahmad, R. Mijumbi, A. Hines (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges Computer Networks, Vol. 167, 11 February 2020. https://doi.org/10.1016/j.comnet.2019.106984
15. H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami and V. C. M. Leung (2017), «Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges,» in IEEE Communications Magazine, vol. 55, no. 8, pp. 138-145, Aug. 2017, doi: 10.1109/MCOM.2017.1600940.
16. Long, Q., Chen, Y., Zhang, H. et al. Software Defined 5G and 6G Networks: a Survey. Mobile Netw Appl (2019). SpringerLink. https://doi.org/10.1007/s11036-019-01397-2
17. A. Pradhan, R. Mathew (2020). Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN). Procedia Computer Science, Vol. 171. https://doi.org/10.1016/j.procs.2020.04.280.
18. S. Shahryari, S.-A. Hosseini-Seno, F. Tashtarian (2020), An SDN based framework for maximizing throughput and balanced load distribution in a Cloudlet network. Future Generation Computer Systems, Vol. 110, September 2020. https://doi.org/10.1016/j.future.2020.04.009
19. H. Zhou et al. (2018), «SDN-RDCD: A Real-Time and Reliable Method for Detecting Compromised SDN Devices,» in IEEE/ACM Transactions on Networking, vol. 26, no. 5, pp. 2048-2061, Oct. 2018, doi: 10.1109/TNET.2018.2859483 .
20. A. Binsahaq, T. R. Sheltami and K. Salah (2019), «A Survey on Autonomic Provisioning and Management of QoS in SDN Networks,» in IEEE Access, vol. 7, pp. 73384-73435, 2019, doi: 10.1109/ACCESS.2019.2919957.
21. Shahram Jamali, Amin Badirzadeh, Mina Soltani Siapoush (2019). On the use of the genetic programming for balanced load distribution in software-defined networks, Digital Communications and Networks, Vol. 5, Issue 4. P. 288-296. https://doi.org/10.1016/j.dcan.2019.10.002 .
22. Sandhya, Yash Sinha, K. Haribabu (2017). A survey: Hybrid SDN, Journal of Network and Computer Applications, Vol. 100. P. 35-55. https://doi.org/10.1016/j.jnca.2017.10.003.
23. Sibylle Schaller, Dave Hood (2017). Software defined networking architecture standardization, Computer Standards & Interfaces, Vol. 54, Part 4. P. 197-202. https://doi.org/10.1016/j.csi.2017.01.005.
24. Bego Blanco, Jose Oscar Fajardo, Ioannis Giannoulakis, Emmanouil Kafetzakis, Shuping Peng, Jordi Perez-Romero, Irena Trajkovska, Pouria S. Khodashenas, Leonardo Goratti, Michele Paolino, Evangelos Sfakianakis, Fidel Liberal, George Xilouris (2017). Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN, Computer Standards & Interfaces, Vol. 54, Part 4, P. 216-228. https://doi.org/10.1016/j.csi.2016.12.007
25. Pedro Neves, Rui Cale, Mario Costa, Gonsalo Gaspar, Jose Alcaraz-Calero, Qi Wang, James Nightingale, Giacomo Bernini, Gino Carrozzo, Angel Valdivieso, Luis Javier Garc?a Villalba, Maria Barros, Anastasius Gravas, Jose Santos, Ricardo Maia, Ricardo Preto (2017). Future mode of operations for 5G — The SELFNET approach enabled by SDN/NFV, Computer Standards & Interfaces, Vol. 54, Part 4, P. 229-246. https://doi.org/10.1016/j.csi.2016.12.008
26. Sudha Anbalagan, Dhananjay Kumar, Gunasekaran Raja, Alkondan Balaji (2019). SDN assisted Stackelberg Game model for LTE-WiFi offloading in 5G networks, Digital Communications and Networks, Vol. 5, Issue 4, P. 268-275. https://doi.org/10.1016/j.dcan.2019.10.006 .
27. Anshu Bhardwaj (2020). 5G for Military Communications, Procedia Computer Science, Vol. 171, P. 2665-2674. https://doi.org/10.1016/j.procs.2020.04.289.
28. Fernando Zanferrari Morais, Cristiano Andre da Costa, Antonio Marcos Alberti, Cristiano Bonato Both, Rodrigo da Rosa Righi (2020). When SDN meets C-RAN: A survey exploring multi-point coordination, interference, and performance, Journal of Network and Computer Applications, Vol. 162, 102655. https://doi.org/10.1016/j.jnca.2020.102655.
29. E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, T. Braun (2018). CDS-MEC: NFV/SDN-based Application Management for MEC in 5G Systems, Computer Networks, Vol. 135, P. 96-107. https://doi.org/10.1016/j.comnet.2018.02.013.
30. Ian F. Akyildiz, Shih-Chun Lin, Pu Wang (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation, Computer Networks, Vol. 93, Part 1, P. 66-79. https://doi.org/10.1016/j.comnet.2015.10.013.
31. Junseok Kim, Dongmyoung Kim, Sunghyun Choi (2017). 3GPP SA2 architecture and functions for 5G mobile communication system, ICT Express, Vol. 3, Issue 1, P. 1-8. https://doi.org/10.1016/j.icte.2017.03.007.
32. Guido Maier, Martin Reisslein. Transport SDN at the dawn of the 5G era, Optical Switching and Networking, Volume 33, 2019, Pages 34-40. https://doi.org/10.1016/j.osn.2019.02.001.
33. Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, Min Huang (2018). A comprehensive survey of Network Function Virtualization, Computer Networks, Vol. 133, P. 212-262. https://doi.org/10.1016/j.comnet.2018.01.021.
34. L. Atzori, J.L. Bellido, R. Bolla, G. Genovese, A. Iera, A. Jara, C. Lombardo, G. Morabito (2019). SDN&NFV contribution to IoT objects virtualization, Computer Networks, Vol. 149, P. 200-212. https://doi.org/10.1016/j.comnet.2018.11.030.
35. Muhammad Afaq, Javed Iqbal, Talha Ahmed, Ihtesham Ul Islam, Murad Khan, Muhammad Sohail Khan (2020). Towards 5G network slicing for vehicular ad-hoc networks: An end-to-end approach, Computer Communications, Vol. 149, P. 252-258. https://doi.org/10.1016/j.comcom.2019.10.018.
36. Sokratis Barmpounakis, Nikolaos Maroulis, Michael Papadakis, George Tsiatsios, Dimitrios Soukaras, Nancy Alonistioti (2020). Network slicing — enabled RAN management for 5G: Cross layer control based on SDN and SDR, Computer Networks, Vol. 166, 106987. https://doi.org/10.1016/j.comnet.2019.106987.
37. Slamnik-Krije?torac, N.; de Britto e Silva, E.; Municio, E.; Carvalho de Resende, H.C.; Hadiwardoyo, S.A.; Marquez-Barja, J.M. (2020). Network Service and Resource Orchestration: A Feature and Performance Analysis within the MEC-Enhanced Vehicular Network Context. Sensors, 20, 3852. https://doi.org/10.3390/s20143852
38. Charalampos Rotsos, Daniel King, Arsham Farshad, Jamie Bird, Lyndon Fawcett, Nektarios Georgalas, Matthias Gunkel, Kohei Shiomoto, Aijun Wang, Andreas Mauthe, Nicholas Race, David Hutchison (2017). Network service orchestration standardization: A technology survey, Computer Standards & Interfaces, Vol. 54, Part 4, P. 203-215. https://doi.org/10.1016/j.csi.2016.12.006.
39. Luis M. Vaquero, Felix Cuadrado, Yehia Elkhatib, Jorge Bernal-Bernabe, Satish N. Srirama, Mohamed Faten Zhani (2019). Research challenges in nextgen service orchestration, Future Generation Computer Systems, Vol. 90, P. 20-38. https://doi.org/10.1016/j.future.2018.07.039.
40. Huertas Celdren, A.; Ruiperez-Valiente, J.A.; Garcia Clemente, F.J.; Rodriguez-Triana, M.J.; Shankar, S.K.; Martenez Perez, G. (2020). A Scalable Architecture for the Dynamic Deployment of Multimodal Learning Analytics Applications in Smart Classrooms. Sensors, 20, 2923. https://doi.org/10.3390/s20102923
41. Wander Queiroz, Miriam A.M. Capretz, Mario Dantas (2019). An approach for SDN traffic monitoring based on big data techniques, Journal of Network and Computer Applications, Vol. 131, P. 28-39. https://doi.org/10.1016/j.jnca.2019.01.016.
42. Alberto Huertas Celdr?n, Manuel Gil Perez, Felix J. Garcia Clemente, Gregorio Martinez Perez 2017). Automatic monitoring management for 5G mobile networks, Procedia Computer Science, Vol. 110, P. 328-335. https://doi.org/10.1016/j.procs.2017.06.102 .
43. R. Khan, P. Kumar, D. N. K. Jayakody and M. Liyanage (2020), «A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions,» in IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 196-248, Firstquarter 2020, doi: 10.1109/COMST.2019.2933899.
44. Raja Majid Ali Ujjan, Zeeshan Pervez, Keshav Dahal, Ali Kashif Bashir, Rao Mumtaz, J. Gonzalez (2020). Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN, Future Generation Computer Systems, Vol. 111, P. 763-779. https://doi.org/10.1016/j.future.2019.10.015.
45. Saksit Jantila, Kornchawal Chaipah (2016). A Security Analysis of a Hybrid Mechanism to Defend DDoS Attacks in SDN, Procedia Computer Science, Vol. 86, P. 437-440. https://doi.org/10.1016/j.procs.2016.05.072.
46. Ihsan H Abdulqadder, Shijie Zhou, Deqing Zou, Israa T. Aziz, Syed Muhammad Abrar Akber (2020). Multi-layered intrusion detection and prevention in the SDN/NFV enabled cloud of 5G networks using AI-based defense mechanisms, Computer Networks, Vol. 179, 107364. https://doi.org/10.1016/j.comnet.2020.107364 .
47. Yulong Fu, Zheng Yan, Hui Li, Xiao Long Xin, Jin Cao (2017). A secure SDN based multi-RANs architecture for future 5G networks, Computers & Security, Vol. 70, P. 648-662. https://doi.org/10.1016/j.cose.2017.08.013.
48. Suzan Basloom, Nadine Akkari, Ghadah Aldabbagh (2019). Reducing Handoff Delay in SDN-based 5G Networks Using AP Clustering, Procedia Computer Science, Vol. 163, P. 198-208. https://doi.org/10.1016/j.procs.2019.12.101.
49. Farzad Tashtarian, Alireza Erfanian, Amir Varasteh (2018). S2VC: An SDN-based framework for maximizing QoE in SVC-based HTTP adaptive streaming, Computer Networks, Vol. 146, P. 33-46. https://doi.org/10.1016/j.comnet.2018.09.007.
50. K. Tolga Bagci, A. Murat Tekalp (2019). SDN-enabled distributed open exchange: Dynamic QoS-path optimization in multi-operator services, Computer Networks, Vol. 162, 106845. https://doi.org/10.1016/j.comnet.2019.07.001.
51. Luis Tello-Oquendo, Shih-Chun Lin, Ian F. Akyildiz, Vicent Pla (2019). Software-Defined architecture for QoS-Aware IoT deployments in 5G systems, Ad Hoc Networks, Vol. 93, 101911. https://doi.org/10.1016/j.adhoc.2019.101911.

Information about author:

Behrooz Daneshmand, postgraduate student of the St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Faculty of infocommunication technologies, St. Petersburg, Russia