+7 (495) 957-77-43

T-Comm_Article 1_1_2022

CODE DOMAIN NOMA IN 3GPP SPECIFICATIONS: 5G OR 6G?

Mikhail G. Bakulin, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, m.g.bakulin@gmail.com
Ben Rejeb Taoufik Ben Camille, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, benrejebt@yandex.ru
Vitaly B. Kreyndelin, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, vitkrend@gmail.com
Denis Y. Pankratov, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, dpankr@mail.ru
Alexey E. Smirnov, Moscow Technical University of Communications and Informatics (MTUCI), Moscow, Russia, smirnov.al.ed@gmail.com

Abstract
The article is devoted to non-orthogonal multiple access (NOMA) schemes with code division within 3GPP standardization. Various companies have proposed a great variety of NOMA schemes for 5G and 6G systems. The scope and main advantages of NOMA technology are briefly illustrated. The most popular varieties of code domain NOMA and their features are considered, their structure, prospects and implementation problems are analyzed.

Keywords: multiple Access, NOMA, 3GPP standardization, 5G, 6G, code division, LDS-CDMA, WSMA, SCMA, PDMA.

References

1. Shirvanimoghaddam, Mahyar & Dohler, Mischa & Johnson, Sarah. (2016). Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations. IEEE Communications Magazine. 55. 10.1109/MCOM.2017.1600618.
2. Z. Ding et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag., Vol. 55, No. 2, pp. 185-191, Feb. 2017.
3. Y. Liu et al. (2017). Nonorthogonal Multiple Access for 5G and Beyond. Proceedings of the IEEE, Vol. 105, No. 12, pp. 2347-2381, Dec. 2017.
4. Z. Yuan et al. (2016). Multi-user shared access for internet of things. IEEE Proc. of Veh. Technol. Conf. (VTC).
5. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen and L. Hanzo (2018). A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323.
6. S. Han et al. (2014). Energy Efficiency and Spectrum Efficiency Co-Design: From NOMA to Network NOMA. IEEE Multimedia Commun. Technical Committee E-Letter, vol. 9, no. 5, pp. 21-22.
7. L. Fink (1970). The Theory of Transmission of Discrete Messages Ed. 2nd, revised, enlarged. Moscow, Sov. Radio.
8. L. Varakin (1985). Communication Systems with Noise-Like Signals. Moscow, Radio and communication
9. M. Bakulin, V. Kreindelin, D. Pankratov (2018). Technologies in Radio Communication Systems on the Way to 5G. Moscow: Hotline-Telecom.
10. Fa-Long Luo (Editor), Charlie Jianzhong Zhang (Editor) (2016). Signal Processing for 5G: Algorithms and Implementations, Wiley-IEEE Press.
11. P. Wang et al. (2006). Comparison of orthogonal and nonorthogonal approaches to future wireless cellular systems. IEEE Veh. Technol. Mag., Vol. 1, № 3, pp. 4-11, Sep. 2006.
12. S. Timotheou and I. Krikidis (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process. Lett., Vol. 22, no. 10, pp. 1647-1651, Oct. 2015.
13. R. Hoshyar et al. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process., Vol. 56, no. 4, pp. 1616-1626, Apr. 2008.
14. H. Nikopour and H. Baligh (2013). Sparse code multiple access. IEEE Proc. of Personal, Indoor, and Mobile Radio Commun. (PIMRC), Sep. 2013, pp. 332-336.
15. M. Bakulin, V. Kreindelin and A. Shumov (2020). Non-orthogonal multiple access: main directions and opportunities. Digital Signal Processing. No. 4. pp. 21-35.
16. 3GPP TR 38.812 V16.0.0 (2018-12), Technical Report, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Non-Orthogonal Multiple Access (NOMA) for NR (Release 16), 2018.
17. 3GPP, R1-166056, Final Minutes report RAN185-v100, http://www.3gpp.org/ftp/tsg ran/WG1 RL1/TSGR1 86/Docs.
18. Y. Yuan and C. Yan (2018). NOMA study in 3GPP for 5G. Proc. IEEE ISTC, Hong Kong, Dec. 2018, pp. 1-5.
19. Yifei Yuan, Zhifeng Yuan, Li Tian (2020). 5G Non-Orthogonal Multiple Access Study in 3GPP. IEEE Communications Magazine, Vol. 58, № 7, pp. 90-96, July 2020, doi: 10.1109/MCOM.001.1900450.
20. Behrooz Makki, Krishna Chitti, Ali Behravan, Mohamed-Slim Alouini (2020). A Survey of NOMA: Current Status and Open Research Challenges. IEEE Open Journal of the Communications Society. Vol. 1, pp. 179-189.
21. 3GPP, R1-164688, Resource Spread Multiple Access, Qualcomm, May 2016.
22. D. Fang et al. (2016). Lattice partition multiple access: A new method of downlink non-orthogonal multiuser transmissions, Washington, DC USA.
23. NOMA Design Principles and Performance, document IMT-2020, Ericsson, Beijing, China, Jun. 2017.
24. 3GPP, R1-1808499, Transmitter side signal processing schemes for NCMA, LG Electronics.
25. 3GPP, R1-1809148, Transmitter design for uplink NOMA, NTT DOCOMO, INC.
26. 3GPP, R1-1805840, Key processing modules at transmitter side for NOMA, ZTE.
27. 3GPP, R1-1808968, Considerations on NOMA Transmitter, Nokia, Nokia Shanghai Bell.
28. 3GPP, R1-1811860, NOMA transmitter side signal processing, CATT.
29. 3GPP, R1-1809434, Transmitter side signal processing schemes for NOMA, Qualcomm Incorporated.
30. 3GPP, TS38.211, Physical channels and modulation (Release 15)
31. 3GPP, R1-1809499, Transmitter side signal processing schemes for NOMA, Samsung.
32. V.B. Kreindelin, A.E. Smirnov, Ben Rejeb T.B.K. (2016). Efficiency of signal processing in multiuser large scale MIMO systems. T-Comm. Vol. 10, No. 12. pp. 24-30.
33. D. Pankratov and A. Stepanova (2019). Linear and Nonlinear Chebyshev Iterative Demodulation Algorithms for MIMO Systems with Large Number of Antennas. 2019 24th Conference of Open Innovations Association (FRUCT). Moscow, Russia, pp. 307-312.
34. M. Bakulin, Ben Rejeb T.B.K., V. Kreindelin, A. Smirnov (2021). Reducing the computational complexity of signal detection in MIMO systems. Electrosvyaz, no. 3, pp. 22-27.
35. H. Haci et al. (2017). Performance of non-orthogonal multiple access with a novel asynchronous interference cancellation technique. IEEE Trans. Commun., Vol. 65, no. 3, pp. 1319-1335, Mar. 2017.
36. V.B. Kreindelin, D.Y. Pankratov (2004). Non-linear iterative multi-user demodulation algorithms. Radiotekhnika, No. 8, pp. 42-46.
37. V.B. Kreindelin, D.Y. Pankratov (2006). Quasi-optimal algorithm for multi-user demodulation in conditions of multipath propagation of radio waves. Electrosvyaz, No. 7, Moscow, pp. 46-48.
38. Ben Rejeb T.B.K. (2018). Investigation of the efficiency of precoding using Grassmannian codebooks in multiuser MU-MIMO systems. DSPA: Digital Signal Processing and its Application. Vol. 8, No. 2, pp. 99-104.
39. M.G. Bakulin, Ben Rejeb T.B.K., V.B. Kreindelin, A.E. Smirnov (2021). Reducing the Computational Complexity of Signal Detection in MIMO Systems. Electrosvyaz, No. 3, Moscow, pp. 22-27.
40. A.E. Smirnov (2018). An iterative demodulation algorithm with low computational complexity for Massive MIMO systems. DSPA: Digital Signal Processing and its Application. Vol. 8, No. 2, pp. 181-186.

Information about authors:

Mikhail G. Bakulin, Moscow Technical University of Communications and Informatics (MTUCI), PhD, associate Professor, Moscow, Russia
Ben Rejeb Taoufik Ben Camille, Moscow Technical University of Communications and Informatics (MTUCI), Ph.D, associate Professor, Moscow, Russia
Vitaly B. Kreyndelin, Moscow Technical University of Communications and Informatics (MTUCI), Doctor of technical science, Professor, Moscow, Russia
Denis Y. Pankratov, Moscow Technical University of Communications and Informatics (MTUCI), PhD, associate Professor, Moscow, Russia
Alexey E. Smirnov, Moscow Technical University of Communications and Informatics (MTUCI), PhD, associate Professor, Moscow, Russia