+7 (495) 957-77-43

T-Comm_Article 6_3_2020

SIGNAL RESOLUTION POLY-GAUSSIAN ALGORITHM FOR NON-GAUSSIAN INTERFERENCE SIMULATION MODELING

Renat F. Zaripov, Kazan National Research Technical University named  after A.N. Tupolev-KAI, Kazan, Russia, renat.zaripov@gmail.com
Marat M. Fatykhov, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan, Russia, marat.fatykhovs@gmail.com

Abstract
The effective use of the code division multiplexing communication systems channel resource requires the new solutions for conflict-free and high-quality reception and transmission of mixed traffic under the conditions of an exponential increase in the number and density of wireless network subscribers, in particular, those who use multiservice services. At the signal transmission channel layer this problem is solved by applying mathematical models adequate to the real signal-noise environment and algorithms for receiving noise-like signals in dynamic jamming mixtures, which provide increased noise immunity, system capacity and having acceptable computational complexity (technical feasibility of signal processing devices), which is extremely important. In practical applications, the system model includes a parametric quasi-stationary channel, a random number of quasi-determined signals and randomly fluctuating interferences, which determines the real signal-noise situation in the communication system radio interface operational area.In this article, scientific and engineering problems related to the use of software for complicated interference cases secondary signal processing, particularly algorithms based on post-correlation synthesis and analysis technology, are considered. The original simulation software modules are described, which allows to compensate inaccuracy and modeling errors that occur when traditional visual and imitative mathematical modeling tools are applied.

Keywords: simulation modeling environment, non-Gaussian channels, signal resolution algorithm, Matlab.

References

1.Kadushkin, V. V. (2016), “CDMA systems non-Gaussian channel optimal receiving algorithm considering intersystem interference.” [“Algoritm optimal’nogo priema v negaussovskih kanalah CMDA sistem s uchetom vliyaniya vnutrisistemnyh pomekh”], Zhurnal radioelektroniki, No11, available at: http://jre.cplire.ru/jre/nov16/index.html.
2. Lerner I. M. and Il’in G. I. (2017), “Possibility of increasing the data transmission rate in the presence of destabilizing factors in communication systems using symbols with mutual interference”, Physics of Wave Processes and Radio Engineering Systems, No.4. 24-34.
3. Lerner I.M. (2017). Method for capacity estimation of real communicational channels with psk-n-signals in presence of ISI and its application. T-Comm, vol. 11, no.8, pр. 52-58.
4. Lerner I.M. and Chernyavskii S.M. (2018), “Capacity estimation of real communicational channels with APSK-N-signals in presence of ISI”, T-Comm, No.4, pр. 48-55.
5. Lerner, I.M., Fayzullin, R.R. and Chernyavskii, S.M. (2018), “To a Matter of Increasing the Spectral Efficiency of Phase Radio-Technical Data Transmission Systems Operating under Strong Intersymbol Interference”, Russian Aeronautics, Vol.61, No.1, 120-126.
6. Lerner I. M., Fatyhov M.M. and Il’in G. I. (2019), “To the matter of improving the efficiency of communication channels with moving objects using APSK-N-signals”, Physics of Wave Processes and Radio Engineering Systems, No.1, pp. 36-49.
7. Lerner I.M. (2019). “To the matter of optimization of the amplitude-frequency responses of communication channels with PSK-n-signals based on the theory of resolution time”, T-Comm, vol. 13, No.9, pр. 36-49.
8. Lerner I.M. (2019). “Influence of the shape of the amplitude-frequency response on the capacity of communication channel with memory using APSK-N signals, which implements the theory of resolution time”. T-Comm, vol. 13, no.10, pр. 45-59.
9. Kadushkin, V.V., Fatyhov, M.M., Zaripov, R.F. (2016) “Sufficiency of a poly-Gaussian approximation of arbitrary probability distributions in the communication systems with mobile objects radio links”, New Technologies, Materials and Equipment of the Russian Aerospace Industry: All-Russian Scientific and Practical Conference with International Participation, Collection of reports. Volume 2 [“O dostatochnosti poligaussovoj approksimacii proizvol’nyh veroyatnostnyh raspredelenij v radioliniyah sistem svyazi s podvizhnymi ob’ektami.” Novye tekhnologii, materialy i oborudovanie rossijskoj aviakosmicheskoj otrasli: Vserossijskaya nauchno-prakticheskaya konferenciya s mezhdunarodnym uchastiem,: Sbornik dokladov. Tom 2.] Izd-vo Akademii nauk RT, Kazan, pp. 521-523.
10. Kozlov, S.V. (2014), New mixed approaches to the communication systems radio interface design [Novye smesevye podhody k proektirovaniyu radiointerfejsa sistem svyazi], OOO «Novoe znanie», Kazan, 132 p.
11. Fajzullin, R.R. (2011), An integrated approach to solving the mobile infocommunication systems signals processing multiprocessor devices structural synthesis problem [“Kompleksnyj podhod k resheniyu zadachi strukturnogo sinteza mul’tiprocessornyh ustrojstv obrabotki signalov mobil’nyh infokommunikacionnyh sistem”] Nelinejnyj mir, Vol. 9. No 2, pp. 78-85.
12. Fajzullin, R.R., Kadushkin, V.V., Zaripov, R.F. (2015), Poly-Gaussian algorithm for mobile communication systems channels joint demodulation-decoding [Poligaussovskij algoritm sovmestnoj demodulyacii-dekodirovaniya v kanalah mobil’nyh sistem svyazi] Nelinejnyj mir, Vol.13. No 8, , pp. 4-9.
13. Zaripov R.F., Fayzullin R.R., Fatykhov M.M. and Kaduskin V.V. KNRTU-KAI. (2017), Programma dlya modelirovaniya algoritmov obrabotki signalov v mobil’nyh sistemah svyazi [A program for simulation of signal processing algorithms in mobile communication systems], Russian Federation, Patent № 2017615223.
14. Chabdarov, Sh.M., Trofimov, A.T. (1975), Poly-Gaussian representations of arbitrary interference and receiving of a discrete signals [Poligaussovy predstavleniya proizvol’nyh pomekh i priem diskretnyh signalov] Radiotekhnika i elektronika, Vol.20. No.4. pp.734-745.
15. Chabdarov, Sh.M., Fajzullin, R.R., Nadeev, A.F., Rahimov R.H., Feoktistov A.Yu. (1997), Statistical models and signal processing techniques in wireless communication systems [Statisticheskie modeli i metody obrabotki signalov v sistemah radiosvyazi: Uchebnoe posobie] Izd-vo Kazan. gos. tekhn. un-ta. Kazan 1997. 90 p.
16.Korolev, V.Yu. (2007) The EM algorithm, its modifications, and their application to the probability distributions mixtures separating problem. Theoretical review [EM-algoritm, ego modifikacii i ih primenenie k zadache razdeleniya smesej veroyatnostnyh raspredelenij. Teoreticheskij obzor], IPI RAN, Moscow, 94 p.
17. Nadeev, A.F., Podkurkov, I.A. (2015), “Adaptive estimation of non-Gaussian interference distribution parameters based on the application of the EM algorithm and its modifications”, [“Adaptivnaya ocenka parametrov raspredeleniya negaussovskih pomekh na osnove primeneniya EM-algoritma i ego modifikacij”.] Nelinejnyj mir, Vol. 13. No 8, pp. 64-72.

Information about authors:

Renat F. Zaripov, assistant, Kazan National Research Technical University named after A.N. Tupolev-KAI, Department of Nanotechnology in Electronics, Kazan, Russia
Marat M. Fatykhov, assistant, Kazan National Research Technical University named after A.N. Tupolev-KAI, Department of Nanotechnology in Electronics, Kazan, Russia