+7 (495) 957-77-43

Article-10_11-2018

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

THERMODYNAMIC FOUNDATIONS OF GRAPHENE OPTICAL PROPERTIES

Aleksey V. Yudenkov, Smolensk State Academy of Physical Culture, Sports and Tourism, 214000, Russian Federation, Smolensk Region, Smolensk, aleks-ydenkov@mail.ru
Aleksandr M. Volodchenkov, Smolensk Branch of Plekhanov Russian University of Economics; Smolensk Branch of «SGUA» (Saratov State Law Academy), Russia, Smolensk Region, Smolensk, alexmw2012@yandex.ru
Maria A. Yudenkova,  Moscow Institute of Physics and Mathematics, Moscow, Russia

Abstract
In recent years sustainable and continuing development of transport there appears a necessity to apply not only new technologies but also new materials with extraordinary properties. Graphene certainly proves to be such. The main specific feature of graphene is that it is a stable two-dimensional crystal. At the present time there has been accumulated a vast experimental data as to graphene growth, its mechanical, electric and optical properties. At the same time the majority of researchers agree that the graphene theory is far from being completed. Hence studying the graphene properties which differ significantly from the properties of three-dimensional crystals is all the more urgent.
The research objectives are defined as follows.
1. To develop a phase-space model of electron in graphene.
2. To explain theoretically the extraordinary property of graphene — variation of absorption coefficient.
To achieve these goals there have been applied the fundamentals of thermodynamics, phase-space properties, Heisenberg indeterminacy principle, theory of black body, experimental data.
Main research results. A model of discrete four-dimensional phase space of electron in graphene has been developed. The process of electron-photon interaction increasing entropy of the system at the microlevel has been described (Compton effect). The absorption variation of graphene on the heated metal surface has been explained through thermodynamics. The result is true for monolayer graphene crystals. In case of multilayer graphene crystals, absorptance is governed by Bouguer-Lambert law.

Keywords: Graphene, absorption ratio, phase space, thermodynamic equilibrium.

References

  1. Volodchenkov A.M., Yudenkov A.B., Rimskaya L.P. (2017). Kvantovanie informacii v simplekticheskom mnogoobrazii [Quantization of information in the symplectic manifold]. V sbornike: Social’no-ehkonomicheskoe razvitie regiona: opyt, problemy, innovacii Materialy VI Mezhdunarodnoj nauchno-prakticheskoj konferencii v ramkah Plekhanovskoj vesny i 110-letiya universiteta. Ministerstvo obrazovaniya i nauki Rossijskoj Federacii; Rossijskij universitet imeni G.V. Plekhanova. Smolenskij filial, pp. 41-46.
  2. Geim A.K. (2011). Sluchajnye bluzhdaniya: nepredskazuemyj put’ k grafenu [Random wandering: the unpredictable way to graphene]. UFN. Vol. 181, pp. 1284-1298.
    3. Eleckij A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. (2011). Grafen: metody polucheniya i teplofizicheskie svojstva [Graphen: methods for obtaining and thermophysical properties]. UFN. Vol. 181, pp. 227-258.
    4. Landau L.D., Lifshic E.M. (1989). Teoreticheskaya mekhanika t.3. Kvantovaya mekhanika [Theoretical mechanics. Vol. 3. Quantum mechanics]. Moscow: Nauka. 768 p.
    5. Landau L.D., Lifshic E.M. (1989). Teoreticheskaya mekhanika t.5. Statisticheskaya mekhanika [Theoretical mechanics. Vol. 5. Statistical mechanics]. Moscow: Nauka. 626 p.
    6. Lozovik Yu. E., Merkulova S.P., Sokolik A.A. (2008). Kollektivnye ehlektronnye yavleniya v grafene [Collective electron phenomena in graphene]. UFN. Vol. 178, No. 7, pp. 757-776.
    7. Oksendal’ B. (2003). Stohasticheskie differencial’nye uravneniya [Stochastic differential equations]. Moscow: Mir, «Izdatel’stvo AST. 408 p.
    8. Pugachev V.S., Sinicyn I.N. (2004). Teoriya stohasticheskih system [Stochastic theory system]. Ucheb. posobie. Moscow: Logos. 1000 p.
    9. Rut’kov E.V., Gall’ N.R. (2014). Neobychnye opticheskie svojstva grafena na poverhnosti rh [Extraordinary optical properties of graphene on rh-surface]. Pis’ma v ZHurnal ehksperimental’noj i teoreticheskoj fiziki. Vol. 100. No. 9-10, pp. 708-711.
    10. Haken G. (2005). Informaciya i samooranizaciya [Information and self-organization]. Moscow: KomKniga. 248 p.
    11. Port S., Stone C. (1979). Brownian Motion and Classical Potential Theory. Academic Press.
    12. Rut’kov E.V., Sheshenya E.S., Gall N.R., Lavrovskaya N.P. (2017). Optical transparency of graphene layers grown on metal surfaces. Semiconductors. Vol. 51. No. 4, pp. 492-497.

Information about authors:
Aleksey V. Yudenkov, Smolensk State Academy of Physical Culture, Sports and Tourism, Smolensk, Head of Management, Sciences and Humanities Dep. Doctor of Physics and Mathematics, Professor, Smolensk, Russia
Aleksandr M. Volodchenkov, Smolensk Branch of Plekhanov Russian University of Economics, Head of Humanities and Sciences Dep., Candidate of Physics and Mathematics;
Smolensk Branch of «SGUA» (Saratov State Law Academy), Assistant Professor, Dep. of Humanities, Socio-Economical, Informational and Law Discipline, Smolensk, Russia
Maria A. Yudenkova, Moscow Institute of Physics and Mathematics, student, Moscow, Russia