+7 (495) 957-77-43

T-Comm_Article 1_3_2021

Извините, этот техт доступен только в “Американский Английский”. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Vladimir Fadeev, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan, Russia, vafadeev@kai.ru
Shaikhrozy Zaidullin, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan, Russia, shvzaydullin@stud.kai.ru
Zlata Fadeeva, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan, Russia, zsgibalina@stud.kai.ru
Adel Nadeev, Kazan National Research Technical University named after A.N. Tupolev-KAI, Kazan, Russia, afnadeev@kai.ru

In this paper we consider two accessibility indicators, namely E-RAB (E-UTRAN Radio Access Bearer) and E-RRC (Evolved Radio Resource Control) failure rates, of the LTE-A communication network belonging to one of the regional operators in Russian Federation. The aim of this study is to find the proper algorithms for accessibility indicators prediction, and performance estimation of these algorithms. During the study, we provide temporal dynamics of the indicators and possible failure reasons, behind these indicators. Then the percentage of the time series values is shown, which are corresponding to the abnormal situations (incidents). After that, the stationarity of the inspected time series using augmented Dickey-Fuller (ADFuller), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) methods is analyzed. Next, the ETS decomposition is performed. In order to predict the future values of the indicators, we utilize SARIMA model, triple Exponential Smoothing (Holt-Winters method), Facebook Prophet, Prony decomposition based model and XGBoost algorithm. Performance estimation is obtained in two ways: by test-sequence- and cross-validation-based Median Absolute Error (MAE). Also, the architecture for the monitoring system, that collects, analyzes and visualizes the required metrics within the infrastructure of the considered operator, is proposed in this paper. Herein, we analyze the possibilities of the open-source solution deployment on each stage of the monitoring process from data mining and preparation up to predictive model learning.

Keywords: key performance identifiers (KPI), RAB (Radio Access Bearer) protocol, E-RAB (E-UTRAN Radio Access Bearer), LTE (Long-Term Evolution) network, LTE-Advanced network, time series forecasting, ETS, SARIMA, Prony decomposition, XGBoost.


1. ETSI TS 132 111-1 V12.1.0 (2015-01).
2. Recommendation ITU-T M.3703.
3. Recommendation ITU-T X.733.
4. ETSI TR 136 902 V9.3.1 (2011-05).
5. Hamalainen, S., Sanneck, H. and Sartori, C. eds., (2012). LTE self-organising networks (SON): network management automation for operational efficiency. John Wiley & Sons. 226 p.
6. ETSI TS 132 522 V11.6.1 (2013-07).
7. ETSI TS 128 500 V14.1.0 (2017-04).
8. Akyildiz, I.F., Kak, A. and Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, 8, pp. 133995-134030.
9. ETSI TS 132 450 V9.1.0 (2010-07).
10. ETSI TS 136 413 V12.3.0 (2014-09).
11. Kreher, Ralf, and Karsten Gaenger. LTE signaling: trouble-shooting and optimization. John Wiley & Sons, 2010. P. 244-252.
12. Fadeev V.A., Zaydullin S.V., Nadeev A.F. (2020). Analysis of unsuccessful E-RAB protocol connections on the LTE-A standard mobile communication network. T-Comm. Vol. 14, no.7, pð. 4-12.
13. Kalderen, B.O.E. and Mindler, D., Verizon Patent and Licensing Inc, (2018). Identification of wireless communication congestion. U.S. Patent 9,930,548.
14. Gopalakrishnan, N., Yang, J., Roa, J., Mathew, J., Sheen, B.S. and Ren, Y., FutureWei Technologies Inc, (2017). Predicting Network Performance. U.S. Patent Application 14/810,699.
15. Singh, R.K., Barr, D.K., Bharti, S. and Kalva, S., InMobi Pte Ltd, (2016). Time series forecasting using spectral technique. U.S. Patent Application 14/837,618.
16. Crosswhite, C.E., (2003). Method for determining optimal time series forecasting parameters. U.S. Patent 6,611,726.
17. Bontempi, G., Taieb, S.B. and Le Borgne, Y.A., (2012), July. Machine learning strategies for time series forecasting. In European business intelligence summer school, pp. 62-77. Springer, Berlin, Heidelberg.
18. Pan, B., Demiryurek, U. and Shahabi, C., University of Southern California USC, (2016). Traffic prediction using real-world transportation data. U.S. Patent 9,286,793.
19. Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on 1.10.2020.
20. Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA. https://doi.org/10.1016/j.ijforecast.2003.09.015.
21. Winters, P.R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6, 324-342. https://doi.org/10.1287/mnsc.6.3.324.
22. Statsmodels.org. 2020. Statsmodels.Tsa.Holtwinters.Exponentialsmoothing — Statsmodels. [online] Available at: <https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html> [Accessed 7 October 2020].
23. GitHub. 2020. Statsmodels/Statsmodels. [online] Available at: <https://github.com/statsmodels/statsmodels/blob/master/statsmodels/tsa/holtwinters/model.py> [Accessed 7 October 2020].
24. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: Holden-Day.
25. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed). Hoboken, New Jersey: John Wiley & Sons.
26. Hyndman, R.J. and Khandakar, Y., (2007). Automatic time series for forecasting: the forecast package for R (No. 6/07). Clayton VIC, Australia: Monash University, Department of Econometrics and Business Statistics.
27. Alkaline-ml.com. 2020. Pyramid.Arima.Auto_Arima — Pyramid 0.9.0 Documentation. [online] Available at: <https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html> [Accessed 7 October 2020].
28. Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45.
29. Harvey, A. & Peters, S. (1990), ‘Estimation procedures for structural time series models’, Journal of Forecasting, 9, 89-108.
30. Hastie, T. & Tibshirani, R. (1987), ‘Generalized additive models: some applications’,Jour-nal of the American Statistical Association82(398), 371-386.
31. GitHub. 2020. Facebook/Prophet. [online] Available at: <https://github.com/facebook/prophet/tree/master/python> [Accessed 18 October 2020].
32. Nigmatullin, R.R., Zhang, W. and Striccoli, D., (2017). «Universal» Fitting Function for Complex Systems: Case of the Short Samplings. Journal of Applied Nonlinear Dynamics, 6(3), pp. 427-443.
33. Nigmatullin, R.R., Zhang, W. and Striccoli, D., 2015. General theory of experiment containing reproducible data: The reduction to an ideal experiment. Communications in Nonlinear Science and Numerical Simulation, 27(1-3), pp. 175-192.
34. Nigmatullin, R.R., Maione, G., Lino, P., Saponaro, F. and Zhang, W., (2017). The general theory of the Quasi-reproducible experiments: How to describe the measured data of complex systems?. Communications in Nonlinear Science and Numerical Simulation, 42, pp. 324-341.
35. Gist. 2020. Enigma_Tools.Py. [online] Available at: <https://gist.github.com/kirlf/9acdac082b14a56c30b272ebbb896d82> [Accessed 16 October 2020].
36. Chen, T. and Guestrin, C., (2016), August. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794.
37. GitHub. (2020). Dmlc/Xgboost. [online] Available at: <https://github.com/dmlc/xgboost> [Accessed 19 October 2020].
38. Scikit-learn.org. 2020. Sklearn.Metrics.Median_Absolute_Error — Scikit-Learn 0.23.2 Documentation. [online] Available at: <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html> [Accessed 19 October 2020].
39. Ethen8181.github.io. (2020). 1_Exponential_Smoothing. [online] Available at: <http://ethen8181.github.io/machine-learning/time_series/1_exponential_smoothing.html> [Accessed 19 October 2020].
40. GitHub. (2020). ClickHouse/ClickHouse. [online] Available at: https://github.com/ClickHouse/ClickHouse [Accessed 20 October 2020].
41. GitHub. (2020). Grafana. [online] Available at: <https://github.com/grafana/grafana> [Accessed 20 October 2020].
42. GitHub. (2020). Elastic Search. [online] Available at: <https://github.com/elastic/elasticsearch> [Accessed 20 October 2020].